A look at NC in 3DST

Guang Yang

Introduction

- NC with a charged pion in the FS can be misselected as a CC candidate.
- Beam monitoring will use CC inclusive sample thus NC will worsen the beam parameter sensitivity.
- First look at NC by comparing the most energetic charged pion and the CC muon.
- This could be plugged into the beam monitoring table soon.
- Caveat: wrong-sign included, NO nue considered.

Geometry

• 3DST:

252 x 236 x 200

ECAL inner cylinder volume:

Length: 3.84 m

radius: 2 m

• ECAL:

23 cm thickness with ~ 5 g/cc averaged density

 Caveat: I took out Yoke here (does not matter).

NC component

- CC inclusive per year: 1.5e7
- NC total per year : 5.3e6
- NC with at least one charged pion in the final state per year: 1.75e6

neutrino spectrum with CC

neutrino spectrum with NC charge pi

Energy of muon/pion

 The CC muon energy is much higher than charged pion in NC. The containment in SAND should be very different.

End point of muon and pion

- Three categories can be identified based on the end points:
 - 3DST contained, ECAL contained and escaped

Fraction of three categories

CC muon:

- 3DST contained: 6%

- ECAL contained: 11%

- escaped: 83%

NC pion:

- 3DST contained: 65%

- ECAL contained: 29%

- escaped: 6%

 Obviously, containment itself can provide a very powerful discrimination. 6% of the escaping pion may be a potential background.

 Decay can be used for 3DST contained while ECAL should be used for the ECAL contained.

07/28/20

Conclusion

- NC should be controlled at < 10% level.
- The remaining part of NC can be added into the beam monitoring table.