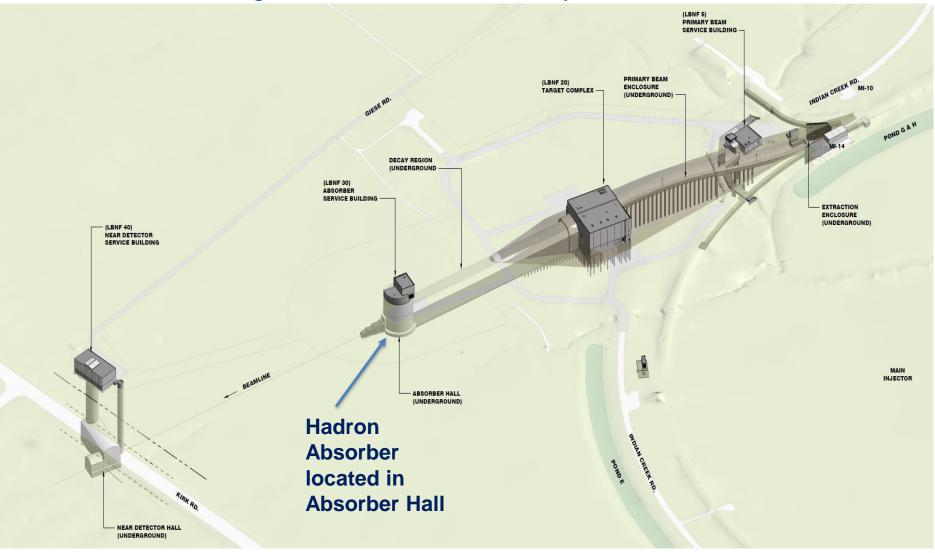
LBNF Hadron Absorber

Preliminary Design Review

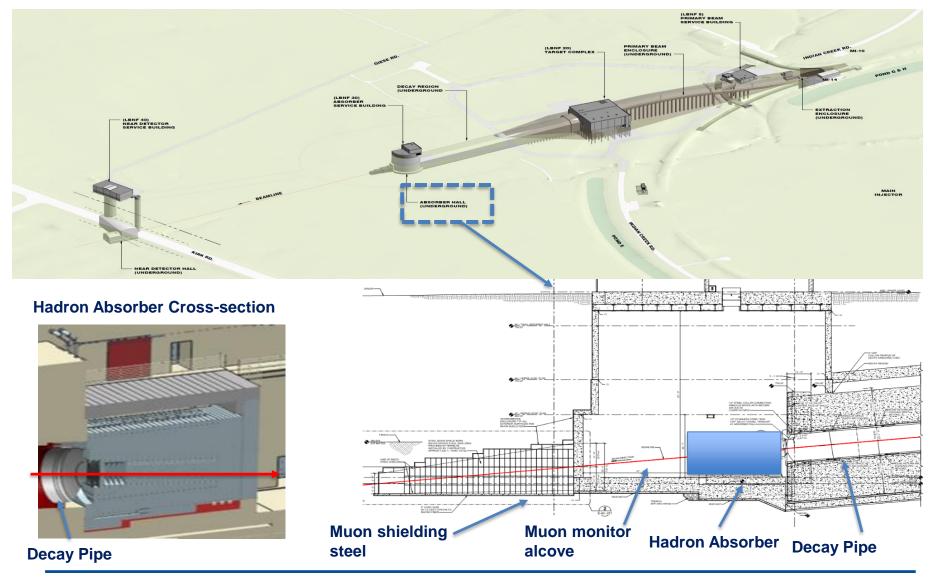
LBNF Hadron Absorber Overview

Abhishek Deshpande June 25 , 2020



Overview

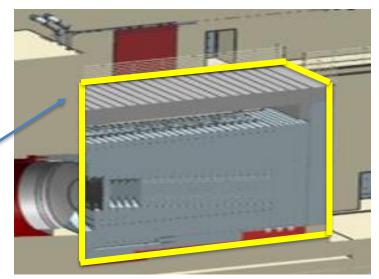
- Introduction
- Scope of the Absorber
- Requirements, specifications, and recommendations
- Supporting documentation
- Questions and discussion


Introduction

Long-Baseline Neutrino Facility at Fermilab

Introduction

Long-Baseline Neutrino Facility at Fermilab


Introduction: Hadron Absorber

- Located directly downstream of the decay pipe –made up of actively cooled Aluminum and Steel blocks surrounded by concrete.
- Provides radiation protection to people and keeps soil/groundwater activation levels to below allowable limits.
- Designed for the worst case condition at 2.4 MW operation:
 - Shortest possible decay distance [221m from MCZero to end of decay pipe].
 - Helium filled decay pipe.
 - For a 1.5-m RAL style target.
 - Designed to sustain 2 successive beam accident pulses –interlock system limits the accident pulses to 1.

Scope of the Hadron Absorber

- The scope includes the Absorber core and surrounding supporting steel structure.
- Surrounding steel shielding.
- Accident condition beam interlock system.
- Remote handling system.

Hadron Absorber review scope excluding the Hadron Monitor

Requirements, specifications, and recommendations

- The requirements/specifications of the Absorber are highlighted in: <u>https://edms.cern.ch/document/2322285/2</u>
- They are:

Requirement	Description
Absorber - radiation protection	The absorber shall provide radiation protection to people, in compliance with the FRCM.
Absorber - energy absorption	The absorber shall absorb the energy of the particles exiting the decay pipe and transfer this energy away using an active cooling system.
Absorber - lifetime	The absorber shall keep its operational ability for the life of the LBNF experiment. Near Site Conventional Facility (NSCF or CF) life is 30-years. And, the LBNF/DUNE experiment life is 20-years.
Absorber - accident conditions	The absorber shall sustain the beam energy deposition under all accident situations that may occur with some reasonable probability.
AC - Absorber Bunker Liner	Beamline shall provide a 24 inch high, leak tight stainless steel pan liner at the bottom of the Absorber bunker

Requirements, specifications, and recommendations

...continued

Specification	Description
Absorber - accident pulses	The absorber shall sustain at least 2 successive accident beam pulses without damage to components or loss of functional ability.
Absorber - accident pulses	The absorber shall include an interlock system that limits the accident pulses to 1.
Absorber - dose rate	The absorber shall have a residual dose at 1 foot (measured from outside the absorber shielding) after 100 day irradiation and 4 hr. cooling that does not exceed 20 mrem/hr.
Cooling System - heat removal	The cooling system shall remove 473 kW of dissipated heat during normal operation. 233 kW using water cooling and 240 kW using forced air/gas ventilation system. This assumes a 1.5-m RAL Target at 2.4-MW beam operations.

Requirements, specifications, and recommendations

 Recommendations from the 2015 advanced conceptual review: LBNE Hadron Absorber Core Advanced Conceptual Design Review Jan 20-22 2015 at FNAL Review Report Dated Feb 02 2015 Teamcenter: ED0002423 Rev-LBNE Doc DB: 10279

Reviewers

Curtis Baffes (FNAL) – Chair Chris Densham (RAL) Ilias Efthymiopoulos (CERN) Peter Kasper (FNAL) Ang Lee (FNAL) Antonio Perillo Marcone (CERN) Andy Stefanik (FNAL)

Lbne-doc-10279

Post-Closeout Actions: disposition by next review

Summary only - details of each action are captured in the sections above

- 1. Include a smoother representation of the spherical sculpted recess in the aluminium core blocks in MARS analysis
- 2. Include possible long-term static misalignment of the target/absorber/far detector system in MARS and thermal/structural analysis of the absorber.
- 3. Develop a QA plan for aluminium core blocks
- 4. Consider alternate connection methods for piping to the core blocks in lieu of welding. Regardless of the chosen technique, estimate expected reliability of system.
- 5. Address high predicted temperatures in dump steel. Specifically, confirm that dump steel corrosion-protection coating can survive predicted temperature regime.
- 6. Calculate stresses due to differential expansion between steel T-blocks and aluminium core blocks.
- 7. Consider whether it is possible to exclude by design the possibility of a non-disrupted beam pulse from interacting with the hadron absorber.
- 8. Assess required and expected reliability of beam permit system.

- Consider if an accident pulse can hit the intersection of gun-drilled channels, where internal sharp features would exist. If so, analyze this case
- 10. Consider the gap between modules w.r.t. remote handling. Incorporate features to ensure that planned tolerances can be held and modules can be removed without binding.
- 11. Consider whether air needs to circulate through absorber, specifically w.r.t. local corrosion effects.
- 12. Future design reviews should consider the absorber system as a whole, including peripheral shielding that is absorbing significant power.
- 13. Consider a longer core (i.e. more solid aluminium blocks before the steel)
- Consider system-level implications of air-handling scheme, especially release of activated air to service building. Consider intermediate barrier enclosure with differential pressure.
- 15. Develop top-level requirements for absorber system reliability and availability, and trace these requirements down to show that the entire system meets reliability requirements, especially water system interfaces.

Supporting documentation

- The supporting documentation for the design review has been assembled at: <u>DUNE-doc-</u> <u>19734-v1</u>.
- During this review, we will show that the design meets the requirements.
- Also, that previous review recommendations have been addressed.

LBNF Hadron Absorber Preliminary Design Review Schedule June 25, 2020 and June 26, 2020

Day -1, Thursday, June 25, 2020

Time	Presentation Title	Presenters
8:00 AM-8:15 AM	Introductions	Mandy Rominsky
8:15 AM - 8:30 AM	LBNF Hadron Absorber Overview	Abhishek Deshpande
	-Discussion-	
8:45 AM – 9:30 AM	LBNF Hadron Absorber Mechanical Design	Vladimir Sidorov and Abhishek Deshpande
	-Discussion-	
9:45 AM-10:30 AM	LBNF Hadron Absorber Core Blocks and Steel Shielding Energy Deposition and Thermal and Stress Analyses	Vladimir Sidorov and Abhishek Deshpande
	-Discussion-	

Day -2, Friday, June 26, 2020

Time	Presentation Title	Presenters
8:00 AM-8:45 AM	LBNF Hadron Absorber Plan for Final Design, Procurement, and Assembly	
	-Discussion-	
9:00 AM-9:20 AM	LBNF Hadron Absorber Interfaces	Abhishek Deshpande
9:20 AM-9:45 AM	LBNF Hadron Absorber Costs, Schedule, and Overall Summary	Abhishek Deshpande

Questions and discussion