LBNF Hadron Absorber: Mechanical Design

Preliminary Design Review

Vladimir Sidorov and Abhishek Deshpande June 25, 2020

Overview

- 1. Introduction
- 2. LBNF Absorber
- 3. LBNF Absorber core
- 4. Absorber air box
- 5. Absorber Aluminum core block and module assembly
- 6. Absorber mask block and module assembly
- 7. Absorber steel block and module assembly
- 8. Steel shielding design
- 9. Concrete shielding design
- 10. Radioactive water collecting pan design
- 11. Support blocks
- 10. Absorber core cooling
- 11. Steel shielding cooling
- 12. Core block prototyping and weld samples
- 13. Core blocks remote handling
- 14. Hadron Monitor
- 15. Hadron Monitor Remote Handling

Hadron Absorber Complex

Introduction: Hadron Absorber

- The configuration of the Absorber is determined through an iterative process between the engineering design, radiological safety, MARS modeling, and the beamline groups.
- Designed for the optimized beam condition (Dune-doc-294):

Proton beam	Protons per cycle	Cycle time	Beam power
energy (Gev)		(Sec)	(MW)
120	1.5E+14	1.2	2.40

• Energy deposition in the Absorber and radiological parameters are determined by MARS. They are a function of the type of Target used in the Target Hall.

LBNF Absorber Mechanical Design

The Long-Baseline Neutrino Facility (LBNF) Hadron Absorber is located downstream of the decay pipe. It consists of actively cooled aluminum and steel blocks surrounded by steel and concrete shielding. The absorber provides radiation protection to personnel and keeps soil and ground activation levels below allowable limits. It is designed for 2.4 MW beam operations. The total heat load deposited into the absorber is approximately 700 kW with 1.00 meter NUMI target, 477kW with 1.50 meter RAL target, 400kW with 2.00 meter NUMI target.

LBNF Absorber (Previous Design)

The absorber core includes: Aluminum Spoiler, five Aluminum Mask blocks with different holes diameter, nine sculpted Aluminum blocks, four full Aluminum blocks and four Steel blocks. Spoiler dimensions: 40"W ;40"H;12" thickness. Mask core blocks dimensions: 77"/79W; 77"H; 12" thickness . Sculpted Al, Full Al, Steel blocks dimensions: 60"/62W; 60"H;

LBNF Absorber Core (Current Design)

The water cooled absorber core is the major part of the absorber. The absorber core includes: The Aluminum Spoiler, four Aluminum Masks, thirteen Aluminum blocks and four Steel blocks. Five millimeters gap between two neighbor core blocks is made during installation.

Core blocks dimensions: Spoiler 79"Wx 77"H x12"Th.; Mask: 77"/79Wx77"Hx12"Th. Aluminum and Steel blocks 67"/69W; 67"H; 12"Th.

Absorber core

Absorber core is water cooled. All Aluminum blocks have gun-drilled cooling lines:

Spoiler

- Material: 6061-T6
 Aluminum
- Quantity: 1
- Dimensions: 79"W X 77"H X 12"
- Cooling lines: 4
- Weight: 7150 lb

Mask

- Material: 6061-T6
 Aluminum
 - Quantity: 4
 - Dimensions: 77"-79"W X 77"H X 12"
 - Cooling lines: 2
 - Weight: 2800 lb

- Material: 6061-T6
 Aluminum
- Quantity: 13
- Dimensions: 67"-69"W X 67"H X 12"
- Cooling lines: 4
- Weight: 5180 lb

Steel core

- Material: A36 steel
- Quantity: 4
- Dimensions: 67"-69"W X 67"H X 12"
- Cooling lines: 2. No gundrilled internal channels
- Weight: 15,550 lb

Air box

The air box is designed to keep most of the radioactive air inside the box. It has air pressure equalization holes. The air box is located in the front of the absorber core blocks. Air box dimensions: 77"Wx77"Hx12"

9

Air box module assembly

The air box is attached to the steel module. The air box can be easy replaced with a core block.

Spoiler

The spoiler size 79"x77"x12" and the same design as the core blocks.

Absorber spoiler module assembly

Mask block

The mask blocks are made from aluminum, dimensions 77"-79"Wx77"Hx12". The hole 67" diameter is located on the center of the block. The hole is covered with two thin 1/16" disks to keep the radioactive air inside the mask.

Mask block cross-section

Two water loops are drilled in the mask block.

Absorber mask-module assembly

Aluminum core block

The four water lines are drilled in the absorber aluminum core block and plugged by Al rods creating water loops. Three holes are drilled through the inlet and outlet ports for loops connection. Two elbows are welded to the block ports and connected to the manifold with pipes.

Absorber AI core block –module assembly

Steel core block

The steel core block has the same size as Al core block, 67"-69"W X 67"H X 12" ". Groves on both sides of the block are machined for the water cooling tubes.

Steel core block module assembly

The water line is banded and welded from 1" pipe. The water line is covered and pressed to the block by ring and holding plate.

Steel shielding design

About 6 million pounds of steel are used in the absorber shielding. The most of shielding is made from 9.11 steel. Only the center module supporting blocks are made from 12" A36 steel.

Steel shielding layer

The steel shielding is installed in the absorber by layers starting from upstream end of the absorber. 6"x4" spacers are welded to one side of the layer. Module support pads are bolted to the support blocks.

Absorber hall

Absorber concrete bunker

Steel strips are embedded into the concrete for the steel shielding welding.

6/26/2020

Radioactive water collecting pan

Support blocks-air channels

Steel 12"x12" blocks 10-113.5" long are installed on the stainless steel pan and joined together with steel rods. Blocks are not welded to the pan. The distance between block is eight inches.

6/25/2020

Absorber core cooling

- The core of the absorber is water cooled.
- The cooling is provided by the LBNF Absorber RAW Cooling system. This is an ASME B31.3 Normal Fluid Service as per FESHM 5031.1.
- Preliminary design done for this system: DUNE-doc-17876.

Absorber core cooling

- Requirement of the system is to provide temperature regulated DI water to the core.
- Maintain an average velocity of 5-7 ft/s in all the gun-drilled cooling ۲ channels in core components.
- Minimum flow requirement for Absorber core components: ۲

Type of block	04	Number of	Elow por	Elow por	Total	Parameter	Value	Units	Remarks
Type of block	Q (y).		Flow per			System volume	~1500	Gal.	
		loops per	cnannei	component	flow, Gpm	System design temperature	130	F	
		component		, Gpm		System operating temperature	80	F	
Aluminum spoiler	1	4	- 20) 80	80	Maximum allowable working pressure	75	Psig	
Aluminum mask block	4	2	: 15	5 30	120	System operating pressure	45	Psig	
Aluminum core block	13	4	20	80	1040	Expansion tank operating Ar. Pressure	5	Psig	
Steel core block	4	2	20	40	160	System pump design horse power	40	Нр	2 pumps running, 1 stand-by spare
Minimum flow required t	for coc	oling @ 80 F inl	let water te	emperature→	1400	System design flow	1540	Gpm	
110			Each		rating	Design flow through the DI loop	48	Gpm	Includes side-stream filteration. 5 micron pre-DI 20 micron post-DI
				Design system resistivity low	3	MOhm-cm			
80			• at ~7	70 Gpm @) 76 Ft.	Design system resistivity high	5	MOhm-cm	
କ୍ଟି 70 -			of he	ad		Tritium concentration	<1E6	pCi/ml	Absorber exchange system, periodic feed/bleed
a) 60						Design flow through water cooled components	1492	Gpm	Spoiler, mask, Al-core, Steel- core
						Design flow through (RAW side) the heat exchanger	405	Gpm	
± 40 30						Design flow (cold side) through heat exchanger	650	Gpm	Cold side means Absorber Intermediate system
20						Design temperature difference (RAW side)	10	F	
10						Design temperature difference (cold side)	6.2	F	
					•	Design heat capacity	590	kW	
0 500		1000 Volumetric Flow	1500 Pate (cal/min)	2000		Design heat transfer surface area	95	Ft ²	
voonatie i ow rate (gamini)									

pre-DI and

Absorber core cooling: System layout

Absorber core cooling: System layout

Piping layout in LBNF Absorber Hall

- All piping parts and materials have been used without any failures on NuMI RAW systems since 2007.
- 304L SS flanged connections to 6061-T6 flanged connections exist in the NuMI Absorber hall. Worked well since 2007.

6/25/2020

🛟 Fermilab

Steel shielding cooling

- Surrounding steel is air cooled.
- An air cooling system, designed by CF, delivers 25,000 CFM of air which blows in on top of the absorber blocks and passes through the 5-mm gaps between the blocks. Collects in the air channels at the bottom and enters the return duct at the back of the Absorber.

G-blocks on top sealed with caulk (Current NuMI scheme) prevents the air from escaping from the top

6/25/2020

‡ Fermilab

Air cooling ducts location

Air cooling ducts location

- The Absorber will have 6061-T6 AI core blocks.
- The size of these blocks are bigger than the Aluminum core blocks manufactured for
- the NuMI Absorber (51" x 51" x 12").

- Also, the gun-drilled cooling channels in the spoiler and the core blocks are more complex than those done for the NuMI blocks.
- Thus, the prototype was built to understand the manufacturing, testing, and qualification processes involved. These will be adapted during the fabrication of the actual Aluminum blocks for the Absorber.

- The core block was built to the following specification:
 - ED0007988--LBNF Aluminum Absorber Core Block Prototype, Rev. B.
- Specification was developed with Target Systems
 Department engineers who have experience with Aluminum components.
- Specification included heat treatment in accordance with AMS 2772E: Heat Treatment of Aluminum Alloy Raw Materials using a polymer quench before machining operations.
- The core block was ultrasonically inspected and qualified in accordance with ASTM B-594 Class A.

67" X 67" X 12" Al core block manufactured at Magna Machine, Inc in Ohio

Gun-drilled channels openings. Not plugged yet. Weld detail needs to

‡ Fermilab

- Welding of the cooling lines to the Al blocks will be done at Fermilab.
- Weld samples were made and tested to come up with a weld joint that would last the operational life of the Absorber—capable of passing most stringent AI weld qualifying specifications.
- Following document was used to generate WPS, PQR, and WPQ for the weld joints that were tested:

PROCEDURE QUALIFICATION 1. Procedure Qualification 1. or 2	ON RECORD (PQR) Procedure Verification □	Horn & Target Vital Component Welding Guidelines for Aluminum			
COMPANY FERMI NATIONAL ACCELERATOR LABORA	ATORY BY ABHISHEK DESHPANDE				
PQR No. <u>RF 801</u> D	DATE				
DRAWING No. <u>F10124966</u> REV. D	DATE				
SUPPORTING DOC Nos. <u>ED0000862, REV. 04</u>		ineering Document No. ED0000862, Rev. 04			
WELDING PROCESS(ES) <u>GTAW</u> TY	PE <u>MANUAL</u> Manual, Semi-Automatic, Automatic, Robotic	,			
JOINTS					
JOINT TYPE FILLET	Joint Details	AUTHOR(S):			
BACKING NONE	- F10124985F	Cory F. Crowley / Michael W. Mcgee			
BACKING MATERIAL (TYPE) NONE					
GLOVES FOR HANDLING PARTS NITRILE					
CLEANING AGENT FOR PARTS ISOPROPYL ALCOHOL		REVIEWER:			
PARTS WIPE-DOWN MATERIAL <u>KIMWIPES</u>		Kris F. Anderson / Patrick G. Hurb			
SCRAPING <u>NEW, CLEAN, CARBIDE SCRAPING TOOL</u>	G 3/16				
SCRAPING DONE IN ONE DIRECTION					
POST SCRAPING TREATMENT BLOW CLEAN DRY AIR		APPROVER:			
OTHER DO NOT RE-SPRAY THE WELD AREA WITH		Kris E. Anderson			
ALCHOL OK OTHER CLEANERS AFTER BLOWING DRY AIR. WEAR CLEAN NITRILE GLOVES AT ALL					
TIMES.		aumente. Theu were mede nurely to keep			
*Note that these PQRs are n	ot ASME. AWS qualified do	cuments. They were made purely to keep			

*Note that these PQRs are not ASME, AWS qualified documents. They were made purely to keep track of how each sample was welded

6/25/2020

LBNF Hadron Absorber Mechanical Design

The weld samples were tested as per NAS1514 Class I.

6/25/2020

LBNF Hadron Absorber Mechanical Design

Core blocks remote handling

Two sections of the morgue can be occupied by four absorber core blocks with modules and middle section is for hadron monitor localization.

Absorber morgue dimensions

Absorber Morgue

Hadron Monitor

The Hadron Monitor is installed in the front of the absorber core blocks. The NUMI Hadron Monitor design removable from the beam is used in this presentation.

Hadron Monitor inside shielding block

Hadron Monitor Remote Handling

NUMI HM replacing fixture

NUMI Hadron Monitor

LBNF Hadron Absorber Mechanical Design

NUMI Hadron Monitor Installation

LBNF Hadron Absorber Mechanical Design

Conclusions

- The design of the absorber for the most conservative case, 2.4 MW beam and 1.5-m RAL Target, is well understood.
- The Absorber has been looked at as a system, that is, its core in combination with the surrounding steel shielding, the SS pan, the two cooling systems, and the remote handling systems were all assessed together.
- Operational experience, good engineering practices, and FESHM standards have been used to pick appropriate materials and designs.
- Prototyping of the critical components has also been done to understand fabrication challenges.
- 3 out of the 4 weld samples made after following all the procedures passed the weld qualification.

