LBNF Hadron Absorber

Preliminary Design Review

LBNF Hadron Absorber Interfaces

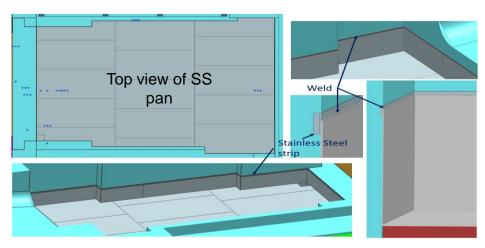
Abhishek Deshpande June 26, 2020

Overview

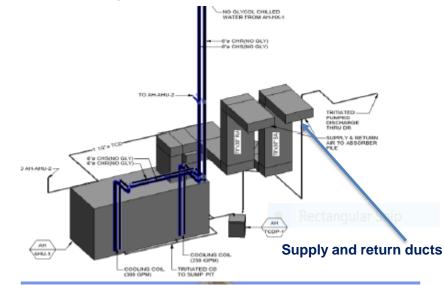
- Introduction
- Interfaces
 - Interfaces with CF
 - Interfaces with other beamline systems
- Discussion

Introduction

- The Absorber needs to work with other beamline systems.
- Interfaces are defined as boundaries where the Absorber connects to other supporting systems.
- There are hard and soft interfaces. Hard interfaces are where the Absorber physically interacts with other systems.
- A soft interfaces describe how design changes in upstream or downstream systems affect the Absorber design; example how Target design affects the Absorber.


Interfaces: CF

- Broadly, the physical interfaces may be categorized into:
- Interfaces with CF systems (Conventional Facilities)
- Interfaces with beamline systems
- The interfaces with CF are highlighted in: https://edms.cern.ch/project/ CERN-0000206753
- Relevant ones are circled.


Item	LBNF Near Site CF Provides	Beamline Provides	Interface Point					
SS Liner Embeds in the Bunker	NSCF provides SS embedment on the Absorber Bunker walls for the welding of the SS pan.	Beamline () provides the SS pan at the bottom of the bunker and welds it to the embedment.	Absorber Bunker Wall Embeds					
Absorber Pile Stability Embeds in the Bunker	NSCF provides carbon steel embeds for the welding of the Absorber Pile Steel to provide stability.	Beamline () provides the shielding steel and welds them to the embeds.	Stability Embeds in Absorber Bunker					
Cable Trays in Absorber Complex	NSCF provides cable trays connecting the Instrumentation room and the RAW room of the Absorber Complex	Beamline () provides the cable pulls between the levels	Cable Trays					
Penetrations for RAW	NSCF provides penetrations upward out of the RAW, laterally through the instrumentation room to the truck bay at the grade level.	Beamline () provides the pipe runs through the penetrations and seals the space between the penetration and the piping.	Penetration Path/Envelope from RAW room to Truck Bay					
Supply and Return Ducting to the Absorber Bunker	NSCF provides supply and return ducting stubs to the Absorber Bunker that feeds in the 25,000 cfm air circulation as shown in drawing, M-AH-403, 100% NSCF PD.	Beamline () provides the ducting run from the stubbed supply duct to circulate the air within the bunker and returns it to the return duct stub.	Supply and Return Duct Stubs (See Figure 2)					

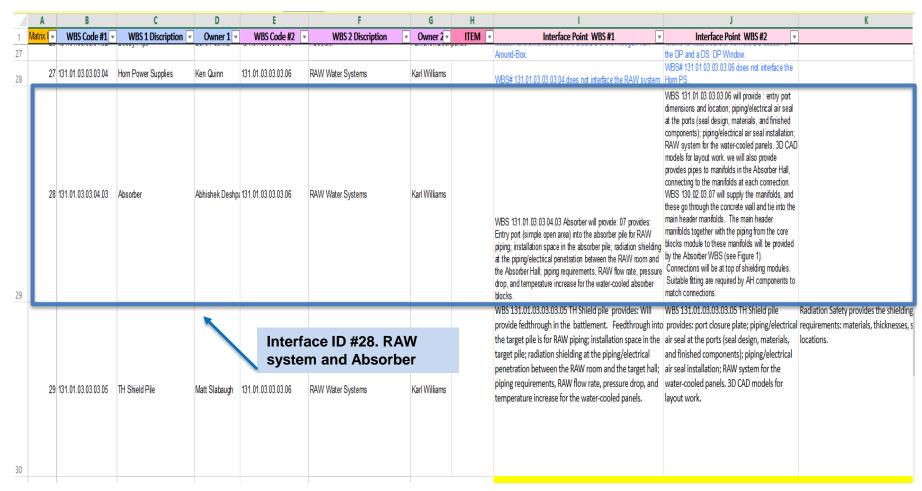
Interfaces: CF

Item	LBNF Near Site CF Provides	Beamline Provides	Interface Point
SS Liner Embeds in the Bunker	NSCF provides SS embedment on the Absorber Bunker walls for the welding of the SS pan.	Beamline () provides the SS pan at the bottom of the bunker and welds it to the embedment.	Absorber Bunker Wall Embeds
Absorber Pile Stability Embeds in the Bunker	NSCF provides carbon steel embeds for the welding of the Absorber Pile Steel to provide stability.	Beamline () provides the shielding steel and welds them to the embeds.	Stability Embeds in Absorber Bunker
Cable Trays in Absorber Complex	NSCF provides cable trays connecting the Instrumentation room and the RAW room of the Absorber Complex	Beamline () provides the cable pulls between the levels	Cable Trays
Penetrations for RAW	NSCF provides penetrations upward out of the RAW, laterally through the instrumentation room to the truck bay at the grade level.	Beamline () provides the pipe runs through the penetrations and seals the space between the penetration and the piping.	Penetration Path/Envelope from RAW room to Truck Bay
Supply and Return Ducting to the Absorber Bunker	NSCF provides supply and return ducting stubs to the Absorber Bunker that feeds in the 25,000 cfm air circulation as shown in drawing, M-AH-403, 100% NSCF PD.	Beamline () provides the ducting run from the stubbed supply duct to circulate the air within the bunker and returns it to the return duct stub.	Supply and Return Duct Stubs (See Figure 2)

Vladimir Sidorov, Dune-doc-14314

CF 100% design review, Dune-doc-18427

Interfaces: With beamline systems

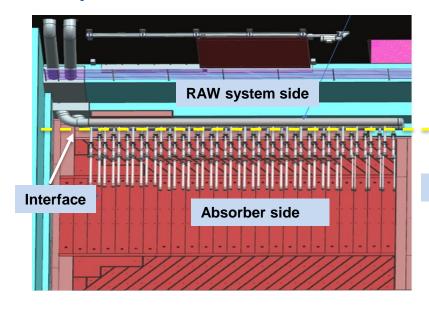

Hard interfaces are highlighted below:

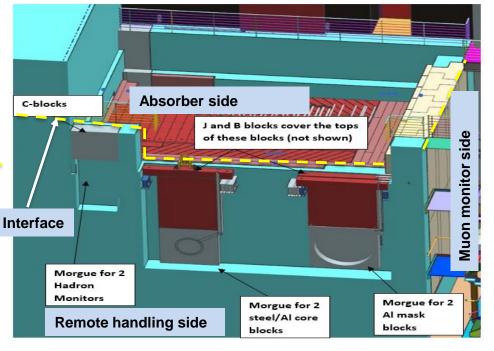
										_								Rem ote				lat Co	nstal ation Coor				
New WBS	Owner	L4 Sub Project Interface Doc	Magnets	Magnet Po	Primary V	\Beam Instrum	Primary V	/aLattice Option	Magnet Inst	Beam Windows	Target	tHorns	Horn	Absorber	TH Sh	RAW F		landl ing I	Vlars Co	ntrdnt	terlo Ali		inati on C	onvenN	∕lain IN∈	eutrin ₍ C	Cable
131.01.03.03.02.02	George Velev	Magnets		1	2	3		<u> 6</u>	141													<u>57</u>	<u>68</u>				<u>153</u>
131.01.03.03.02.03	Steve Hays	Magnet Power Supplies	01		4			7												<u>37</u>	<u>50</u>		<u>69</u>	<u>85</u>			<u>154</u>
131.01.03.03.02.04	Karl Williams	Primary Water Systems	02	04					<u>143</u>	<u>150</u>	<u> </u>		14			<u>35</u>			112	<u>38</u>			<u>70</u>	<u>86</u>	<u>103</u>		<u>155</u>
131.01.03.03.02.05	Nathan Eddy	Beam Instrumentation	03				8	<u> 9</u>	113		<u>12</u>	<u>152</u>								<u>39</u>	<u>51</u>	<u>58</u>	<u>71</u>		104 g	999	<u>156</u>
131.01.03.03.02.06	Kevin Duel	Primary Vacuum	05			80		10	<u>114</u>	<u>11</u>	L						<u>117</u>			<u>40</u>		<u>59</u>	<u>72</u> .	<u>151</u>	<u>105</u>		<u>157</u>
131.01.03.03.02.07	John Johnstone	Lattice Optics & Beam loss ca	06	07		09	10		<u>115</u>		<u>13</u>											<u>60</u>		88	<u>106</u>		
131.01.03.03.02.08	Kevin Duel	Magnet Installation	141	142	143	113	114	115													1	<u>45</u> <u>1</u>	146	<u>147</u>	<u>148</u>		
131.01.03.03.04.04	Dave Pushka	Beam Windows			150		11		116						<u>20</u>	<u>21</u>		<u>30</u>	122	<u>41</u>		<u>61</u>	<u>73</u>	<u>89</u>			
131.01.03.03.03.02	Pat Hurh	Targetry (& Baffle)				12		13				<u>17</u>			<u>22</u>	<u>23</u>		<u>31</u>	<u>123</u>	<u>42</u>		<u>62</u>	<u>74</u>			134	<u>158</u>
131.01.03.03.03.03	Cory Crowley	Horns									17		18		<u>24</u>	<u>25</u>		32	<u>124</u>	<u>43</u>		63	<u>75</u> .	<u>149</u>			<u>159</u>
131.01.03.03.03.04	Ken Quinn	Horn Power Supplies			14							18			<u>100</u>				4	14	<u>53</u> 99	19	<u>76</u>	90			<u>160</u>
131.01.03.03.04.02	Dave Pushka Decay Pipe							Interf	200 ID					26			118		<u>125</u> 4	15	/	<u>64</u>		<u>91</u>			<u>161</u>
131.01.03.03.04.03	Abhishek Deshpande	Ausuluei						men	ace IL		19					<u>28</u>	<u>119</u>	<u>33</u>	<u>126</u> 4	16	/	<u>65</u>	<u>77</u>	<u>92</u>		135	<u>162</u>
131.01.03.03.03.05	Matt Slabaugh	TH Shield Pile								20	22	24	100			<u>29</u>	120	<u>34</u>	<u>127</u>	<u>47</u>		<u>66</u>	<u>78</u>	<u>93</u>		<u>172</u>	<u>163</u>
131.01.03.03.03.06	Karl Williams	RAW Water Systems								21	23	25	27	28	29		121	<u>35</u>		48 5	<u>54</u>		<u>79</u>	<u>94</u>			<u>164</u>
combine with modeling	Kamran Vaziri	Radiation Physics							117					119	120	121			<u>129</u>					<u>133</u>			
131.01.03.03.03.07	Vladimir Sidorov	Remote Handling								30	31	32		33	34	35			<u>130</u>	49 5	<u>55 6</u>	<u>7</u>	80	<u>95</u>	ç	999	<u>165</u>
131.01.03.03.01.01	Nikolai MokhoV	MARS Modeling			112					122	123	124		126	127	128	129	130		1	132					<u>136</u>	
131.01.03.03.05.02	Greg Vogel	Controls	36	37	38	39	40		144	41	42	43	44	46	47	48		49		٨,	<u>56</u>		81	<u>96</u>	<u> 107</u>	137	<u>166</u>
131.01.03.03.05.03	Adam Olson	Interlocks		50		51	52						53	131		54		55	132 5	6			<u>82</u>	<u>97</u>	<u>108</u>		<u>167</u>
131.01.03.03.05.04	Virgil Bocean	Alignment	57			58	59	60	145	61	62	63		65	66			67					<u>83</u>	98	109	<u>138</u>	
131.01.03.03.05.05	Cons Gattuso	Installation Coordination	68	69	70	71	72		146	73	74	75	76	77	78	79		80	8	31 8	82 8	3		<u>99</u>	110	<u>139</u>	<u>168</u>
	Kennedy Hartsfield	Conventional Facilities, Near Si	te	85	86		151	88	147	89		149	90	92	93	94	133	95	9	96 9	97 9	8 9	99		111 1	<u>140</u>	
	Dave Capista	Main Injector	101	102	103	104	105	106	148										10	07 1	08 10	19 1	110	111			<u>169</u>
131.01.03.03.04.05	Jon Paley	Neutrino Beam Instrumentation	ı								134			135					136 1	37	13	38 1	.39	140			<u>170</u>
	Cons Gattuso	Cable Cordination	153	154	155	156	157				158	159	160	162	163	164		165	10	66 1	.67	1	168		169	170	

https://fermipoint.fnal.gov/project/LBNF/Near%20Site/Beamline/Shared%20Documents/Forms/AllItems.aspx

Interfaces: With beamline systems

Interface ID definitions:


https://fermipoint.fnal.gov/project/LBNF/Near%20Site/Beamline/Shared%20Documents/Forms/AllItems.aspx


Interfaces: Beamline systems

 Some interfaces with non-CF systems are well defined, such as those with RAW systems, remote handling, controls, interlocks, and neutrino beam instrumentations (Muon monitors).

However, interfaces with other systems such as the Decay
 Pipe are still under development due to scope reevaluation

by CF.

Discussion