Fermilab **ENERGY** Office of Science

PIP-II Compressed Gas Systems Design

Maurice Ball/Jerzy (Yurick) Czajkowski PIP-II LINAC Complex Mechanical Fluid Systems PDR April 21, 2021 A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Table of Contents

- Scope Cartoon
- Requirements (FRS/TRS)
- Screen shots
- P&ID/Block Diagram/2D Pump Room
- Piping Analysis

Compressed Gas Scope Layout – Cryo Plant/LINAC Complex Sections

Compressed Gas Scope Layout (Continued) – BTL Section

PIP-II

Compressed Air Highlights

- 2 200 HP Rotary screw air compressors
- Redundant operation Air compressor arrangement
- Redundant operation desiccant air dryers and particulate filters
- 1500 Gallon reservoir tank
- Water/oil separator
- Electric operated automatic condensate drains

Technical Requirements for Compressed Instrument Air System

- Building Infrastructure shall design the compressed air system infrastructure according to the following specifications:
- Discharge Pressure = 100 PSIG
- Total Discharge Flow = 1060 SCFM (903.8 SCFM required)
- Dewpoint = $-40^{\circ}C/F$
- Particulate Filtration = .1 micron
- Instrument air flow requirement summary for individual components can be found in the Instrument Air Usage Document – Teamcenter Document #ED0012529

Compressed Instrument Air End User Flow Usage

	Quantity	Unit	Total
		Consumption	Consumption
Component	[#]	[scfm]	[scfm]
RFQ Couplers	4	4	16
HWR Couplers	8	1.67	13.4
SSR1 Couplers	16	3.5	56.0
SSR2 Couplers	35	6.17	216.0
LB650 Couplers	36	6.17	222.1
HB650 Couplers	36	7.03	253.2
Cryomodule JT Control Valves	25	0.141	3.5
Cryomodule CD Control Valves	25	0.066	1.7
Beam and Vacuum Valves	All	0**	0**
CDS			
Tunnel Control Valves	All	-	28.3
Distribution Box Control Valves	All	-	1.4
Cryoplant			
Coldbox Control Valves	All	-	64.9
Warm Compressor System Control Valves	All	-	14.8
Warm Header Control Valves	2	0.2	0.4
Cryoplant ORS and GMP Control Valves	All	-	11.8
Recovery Compressor Control Valves	All	-	0.2
Liquid Helium Dewar Control Valve	1	0.1	0.1
	903.8		

** Note that beam and vacuum gate valves throughout the complex use instrument air for opening and closing where consumption is only during actuation, therefore the usage is essentially zero during normal operation.

Compressed Air System P&ID

Compressed Air System P&ID (Continued)

LEGEND: PI — Pressure Gauge PT — Pressure Transmitter EV/S — Solenoid Valve FT — Flow Meter/Transmitter FI — Flow Indicator

PIP-II Compressed Air System Design

(continued

Nitrogen Gas Highlights

 Source of Nitrogen Gas is Nitrogen Dewar provided by Cryo Group

Technical Requirements for Nitrogen Gas System

- Building Infrastructure shall design piping infrastructure for utility nitrogen gas according to the following specifications:
- Discharge Pressure = 100 PSIG
- Total Discharge Flow = 35.5 SCFM (20 g/s)
- Nitrogen gas flow requirement summary for individual components can be found in the Nitrogen Usage Document – Teamcenter Document #ED0012529

Nitrogen Gas End User Flow Usage

System	Frequency	Pressure	Flow Rate			
System		[psig]	[-]	[g/s]		
LCW – oxygen removal	continuous	50	10 cfm	5.43		
LCW – vessel blanket flow	continuous	50	2 <u>cfh</u>	0.02		
Clean nitrogen for portable cleanroom	infrequent	100	2000 <u>cf</u> /day	0.75		
and vacuum use			(10 cfm instantaneous)			
Cryoplant purifier charcoal bed	infrequent	50		10**		
regeneration						
Total =						

** Based on NML regeneration procedure with 1 kW heater 225° F outlet temperature

Nitrogen Gas Block Diagram

NOTES:

- 1. NITROGEN PRESSURE 100PSIG
- 3. FLEXIBLE HOSES ARE USED FOR PURGE, VACUUM AND PORTABLE CLEAN ROOM

Preliminary Analysis Of Designed Compressed Gas Piping Loads

PIP-II COMPRESSED AIR MATERIAL TYPE AND SIZES

PRESSURE DESIGN OF COMPONENTS (FROM ASME B31.3 - 304)

Minimum Pipe Thickness is given by,

 $t_m = t + c \tag{2}$

Here,

$$t = \frac{PD}{2(SEW + PY)} \tag{3b}$$

Nomenclature used in equations:

c = sum of the mechanical allowances thread depth plus corrosion and erosion allowances.

D = outside diameter of pipe

d = inside diameter of pipe

- E = quality factor from Table A-1A or Table A-1B
- P = internal design gage pressure
- S = stress value for material from Table A-1 or Table A-1M
- T = pipe wall thickness
- t = pressure design thickness in accordance with para. 304.1.2
- t_m = minimum required thickness, including mechanical, corrosion, and erosion allowances
- W = weld joint strength reduction factor in accordance with para. 302.3.5(e)
- Y = coefficient from Table 304.1.1, valid for t < D/6

Preliminary Analysis Of Compressed Gas Piping (continued)

Tube:

Material Specification: Cu Type "K"

Design Pressure (P): 100 psig

Design Temperature: 68 ºF (Ambient)

Pipe Thickness Calculation Parameters:

Coefficient Y = 0.4

Stress Value for Material, S = 6,000 psi

Quality Factor, E = 1

Weld Joint Strength Reduction Factor, W

Primary piping wall thickness (T) exceeds minimum wall thickness (t_m) requirements

Nominal Size	Outer Diameter, D	Thickness, T	Inner Diameter, d	Mechanical Allowance, c	Pressure Design Thickness, t	Is t < D/6?	B.	Is $T > t_m$?
in	in	in	in	in	in		in	
4	4.125	0.134	3.857	0.02	0.03415	Yes	0.05415	Yes
3	3.125	0.109	2.907	0.02	0.02587	Yes	0.04587	Yes
2	2.125	0.083	1.959	0.02	0.01759	Yes	0.03759	Yes
	1.125	0.065	0.995	0.02	0.00931	Yes	0.02931	Yes
3/4	0.875	0.065	0.745	0.02	0.00724	Yes	0.02724	Yes
1/2	0.625	0.049	0.527	0.02	0.00517	Yes	0.02517	Yes
3/8	0.500	0.049	0.402	0.02	0.00414	Yes	0.02414	Yes
1/4	0.375	0.035	0.305	0.02	0.00310	Yes	0.02310	Yes

PIP-II LCW System Design

Installation Plan

- Compressed air equipment will be located in Utility Plant and will be procured and installed by Conventional Facilities
- Both Nitrogen and Compressed air piping in the Utility Plant will be installed within this Building Infrastructure scope.
- Both Nitrogen and Compressed air piping through the Cryoplant and throughout the LINAC complex, including the LINAC enclosure will be installed by Conventional Facilities.

Screenshot – Scope Complex (Northwest Elevated View)

Screenshot – CRYO Plant and Utility Plant (Northwest Elevated View)

Screenshot – LINAC Enclosure – LCW/Compressed Gas Routing (West Elevated View)

Screenshot – LINAC Enclosure to BTL Transition – LCW/Compressed Gas Routing (NE Elevated View)

Screenshot – BTL Enclosure Transition to F37 Building – LCW/Compressed Gas Routing (SE Elevated View)

