DUNE Near Detector: Physics and System Overview

Dan Dwyer DUNE Near Detector Conceptual Design Review 7-9 July 2020

Who am I

- Dan Dwyer
- Staff Scientist, LBNL
 - Technical Coordinator for DUNE ND-LAr Consortium
 - L2 Manager of the DUNE Near Detector
 - DOE Early Career Award for Pixel LArTPC technology
 - Background in ν physics with KamLAND, Daya Bay Experiments
 - APS Primakoff Award for "innovative contributions to neutrino physics"

Outline

- Context
- DUNE Physics
- The role of the Near Detector
- Near Detector Concept
- Scope and Key Design Aspects of Detectors
- Subsystem descriptions
- Near Detector Organization and Management
- Summary

Today's Charge

As part of the review, the committee should assess the following questions for the 'Day-1' DUNE-ND:

- Are the DUNE-ND requirements sufficiently well understood and documented and are they sufficiently complete for proceeding with the designs of each element?
- 2. Do the designs address detector requirements? Are the designs feasible? Are the key technical specifications for the major DUNE-ND elements understood and addressed?
- 3. Have interfaces between detector elements been identified? Are the interfaces with the cryostat, cryogenic systems, facility, and installation sufficiently understood?
- 4. Are the scope and institutional responsibilities for the major elements defined? Is all essential scope covered?
- 5. Are plans for prototyping tests sufficient to validate viability of the designs?
- 6. Do conceptual engineering models or schematics provide sufficient information to ascertain constructability and functionality? Do conceptual engineering calculations validate the design?
- 7. Have installation plans been sufficiently developed to give confidence that the detector elements can be installed?
- 8. Have appropriate manufacturing methods been identified and have rough cost and schedule estimates been developed? Is the schedule to move forward towards preliminary design, prototyping, and production realistic?

Context: Near Detector Design Maturity

DUNE Near Detector Development:

- Formal DUNE ND design effort initiated just over 1 year ago (Apr. 2019)
- Focus: delivering ND system essential for physics on 'Day-1'
- First two DUNE ND Consortia (ND-LAr, SAND) formally initiated May 2020

• Design Maturity:

- ND design is not as mature as Far Detector, but has shown rapid progress
- Design well-motivated by DUNE physics requirements
- Scope and Key Design Aspects are well-understood
- Active and successful prototyping program
- Institutional partners working together coherently

Next Steps:

- Complete transition to ND Consortia, initiate Preliminary Design efforts

DUNE Physics and the Near Detector

DUNE Physics:

Accelerator Neutrinos:

- CP Violation
- Mass Ordering

Headline measurements

Precision Mass and Mixing
 Supernova Neutrino Bursts
 Baryon Number Violation
 BSM Searches

DUNE Near Detector:

- In LBNF Beam (574m from target)
- At new underground site (62m deep)

Key Purpose: Enable the search for CP Violation

With ~10M neutrino events/yr, it will also provide a rich physics program all on it's own.

Physics Target for the 'Day-1' Near Detector

		Physics Milestone	Exposure (staged years)
The 'Day-1' Near Detector:	5σ mass ordering	1	
The Near Detector suite/capabilities needed from	the	$(\delta_{ m CP}=-\pi/2)$	
start of LBNF neutrino beam operation.	5σ mass ordering	2	
	(100% of $\delta_{ m CP}$ values)		
'Day-1' System Requirement:		3σ CPV	3
Enable a 3g observation of maximal CP violation		$(\delta_{ m CP}=-\pi/2)$	
		3σ CPV	5
3 Max-CDV is difficult.	From DUNE TDR	(50% of $\delta_{ m CP}$ values)	
So Iviax-CP v is difficult.	No CPV DUNE ve Appearance	5σ CPV	7
Unly modest variation in v_e signal 0 160	Normal Ordering $\sin^2 2\theta_{13} = 0.088$	$(\delta_{ m CP}=-\pi/2)$	
In 3.5 yrs (staged), v-only operation, NO:	$\sin^2\theta_{23} = 0.580$ 3.5 years (staged)	5σ CPV	10
~1100 v _e appearance events $\frac{1}{2}$ 120	$ = \frac{ \mathbf{f} \mathbf{H} }{ \mathbf{F} } = \frac{ \mathbf{F} }{ F$	(50% of $\delta_{ m CP}$ values)	
~300 background	$(v_{\mu} + \overline{v}_{\mu}) CC$	3σ CPV	13
Max CPV:	$(v_{\tau} + \overline{v}_{\tau})$ CC	(75% of $\delta_{ m CP}$ values)	
Statistical uncertainty: ~3%	$\delta_{CP} = -\pi/2$	$\delta_{ m CP}$ resolution of 10 degrees	8
	$\frac{-\sigma_{CP} - \sigma_{CP}}{-\cdots \sigma_{CP}} = +\pi/2$	$(\delta_{ m CP}=0)$	
Requires total systematic Max CPV40		$\delta_{ m CP}$ resolution of 20 degrees	12
uncertainty less than ~3%	[:]	$(\delta_{ m CP}=-\pi/2)$	
Compare with state-of-the-art of ~7-8% (T2K, NoVA)		$\sin^2 2 heta_{13}$ resolution of 0.004	15
1	2 3 4 5 6 7 8 Reconstructed Energy (GeV)		

Predicting the Far Detector Signal

Near Detector:

Must enable a precise (better than ~4%) prediction of the FD appearance signal

Far Detector appearance signal: $\frac{dN_{\nu_e}^{\text{far}}}{dE_{\text{rec}}} = \int_{E_{\nu}} D_{\nu_e-\text{CC}}^{\text{far,inclus.}}(E_{\text{rec}};E_{\nu}) \sigma_{\nu_e-\text{CC}}^{\text{inclus.,Ar}}(E_{\nu}) P_{\mu e}(E_{\nu}) \Phi_{\nu_{\mu}}^{\text{far}}(E_{\nu}) \Big|_{l=0} dE_{\nu}$ LArTPC response v-Ar cross section Beam flux Existing model uncertainties: ~10% for each

Near Detector: Concept Development

Step 1: Sketch Concept

Construct detector based on preceding physics discussion. ~25m long LArTPC to range ~5 GeV muons. ~30m wide LArTPC to provide off-axis data.

Step 3: Reality Check

Evaluated and endorsed by independent scientific review panel: Long Baseline Neutrino Committee (LBNC).

D. Dwyer I ND Overview

LBNC Closeout Report, July 2019

The LBNC strongly endorses the need for a ND containing a movable liquid argon TPC and magnetic spectrometer, and a fixed on-axis beam monitor. These are the minimum elements required for DUNE to achieve its physics goals, and are needed from the start of data-taking.

LBNF/DUNE

Near Detector: Day-1 System Design

ND LArTPC: Description

ND LArTPC: Key Design Aspects

LArTPC Minimum Size:

7m wide by 3m tall by 5m deep in beam direction.

Required by coverage of neutrino cross-section, not by simple detector efficiency

Fraction of events in 'bad' kinematic space (< 5% acceptance)

LBNF/DUNE

ND LArTPC: Key Design Aspects

Near Site Neutrino Intensity:

ND LArTPC must cope with beam neutrino pileup:

- 20-30 interactions within LArTPC per ~10 μs beam spill
- Many more signals from neutrino interactions outside active region, particularly rock muons.

Charge signals:

Appear ~simultaneous, relative to drift time: ~1.6 mm/µs

Light signals:

Enable ~ns signal separation, if accurately associated with corresponding charge signal

Overcoming Pileup:

Pixelated charge readout (LArPix):

Provides unambiguous 3D charge readout

Optical modularity, high photodetector coverage:

Achieve high efficiency/accuracy for charge-to-light signal association.

LBNF/DU

ND LArTPC: Partners

Subsystem

Module Structure HV Field Structure Charge Readout

Light Readout Calibration TPC Module Integ. TPC Module Install.

Institutions

Univ. of Bern Univ. of Bern SLAC, CSU LBNL, Caltech, CSU, Rutgers, UC-Davis, UCSB, UPenn, UTA JINR, Univ. of Bern MSU, JINR, Univ. of Bern LBNL, CSU, Univ. of Bern All

Temporary Muon Spectrometer (SSRI): Description

Magnetized Muon Range Stack:

- Sandwich of 100 steel plates & scintillator strip trackers
- 7m (wide) x 3.2m (tall) x 7m (in beam direction)
- Conventional coils to provide magnetic field
- Moves off-axis with ND LArTPC

Temporary Muon Spectrometer (SSRI): Key Design Aspects

Detector Size:

- Face: 7m (wide) x 3.2m (tall), to match LArTPC
- Depth: 7m (in beam direction), to range 5 GeV muons

Number of tracking planes:

To achieve muon energy resolution on par with FD (~4%)

Tracker Spatial Resolution & Magnetic Field:

To precisely measure neutrino/antineutrino composition

Tracker Time Resolution:

Overcome beam pileup

PRISM: Description

PRISM:

Enable the ND LArTPC and Muon Spectrometer to make measurements away from the beam axis.

Components:

Motorized skates:

Support and drive detector motion on rails integrated into floor **Energy Chain:**

Flexible conduit to maintain utilities (power, cryo) to detectors

Monitoring:

Instruments to track detector position

PRISM: Key Design Aspects

Travel Distance:

Travel to 30m off-axis covers neutrino energies from 0.5-5 GeV

Weight:

Must support ~700-ton Muon Spectrometer, ~300-ton LArTPC

Utilities:

Energy chain must provide detector utilities, LArTPC cooling (LN)

LBNF/DUNE

SAND: Description

SAND:

System for on-axis Neutrino Detection. **Purpose:**

Monitor stability of neutrino beam intensity, energy spectrum, and spatial profile.

Components:

Reuse Existing KLOE Detector Systems:

- Electromagnetic Calorimeter
- Superconducting solenoid
- Iron yoke

New Tracker:

- 3D plastic scintillator tracker
- Straw tubes or TPC

SAND: Key Design Aspects

Beam Monitoring Requirements:

- Identify neutrino interaction position/time
- At minimum: reconstruct muon energy
- If able to reconstruct neutrino energy, the sensitivity to variations improve (i.e. faster, or using less target mass).
- Must tolerate pileup

Relation to Near Detector 'Reference Design'

'Reference' Near Detector Design:

DUNE Collaboration goal: Replace the Muon Spectrometer with a more performant detector: ND-GAr

ND-GAr Detector:

Gas argon TPC:

1-ton argon in a ~6m diameter 10-bar pressure vessel **Calorimeter:**

Based on CALICE design, located outside pressure vessel

Superconducting Magnet:

Exploring design options

Physics Motivation:

Delivers more precise characterization of v-Ar interactions, powerful constraint on neutrino interaction models. Likely needed for ultimate DUNE sensitivity.

DUNE Strategy:

25

Collaboration will continue to develop ND-GAr design, replace Muon Spectrometer once resources & plan established.

Near Detector: Organization

Near Detector Consortia / Design Groups:

ND-LAr Consortium:

Consortium Lead: Michele Weber Technical Lead: Dan Dwyer

ND-GAr/Muon Spectrometer Design Group:

Design Group Leads: Alfons Weber, Alan Bross Technical Lead: Tom LeCompte

ND Beam Monitor - SAND Consortium:

Consortium Lead: Luca Stanco Technical Lead: (tbd.)

ND DAQ Task Force:

Task Force Lead: Asher Kaboth

Example Consortium Structure

Near Detector: Schedule

	Y 20 CY 2019				CY 2019 CY 2020 CY 2021 CY 2022 CY 2023 CY 2024 CY 2025 CY 2026												CY 2027 CY 2028 CY 2029																										
Category	04	01	0	2 0	- 3 04	1 01		2 03	04	01	02 0	3 04	1 01	02	03	04	01	1 02	03	04	01	02	03	04	01	02	03	04	01	02	03 0	04 0	01 0	2 0	3 (04 0	01	02 0	03 0	04 0	1 02	2 03	04
CD Milestone											•)-2/3b		•	CD	-3													~										C	D-4	(earl	y) <
ND Management																	1	Near	Dete	ecto	r Ma	inage	eme	nt																			
ND LAr TPC								TPC	Mo	dule	Integr	Argo Fie	eld Str	Hi Hi	2 Der gh Vi ure D Cal Cal	mor M olta esig char ibra ibra	nstr odu ge gn Rea atio	rator ule S Desi Rea dout ND	truct gn dout Des ssign LAr1	ture : Des ign IPC I	Desi ign	scale	: der	mon	stra	tor I	nsta	llati	on a	ND L	Ar TP	C Pro	oubco	DOI DOI Mil- Nor	E & I E Ta: esto nDO	NonD sk E Tasi	k	Lege	nd				
ND LArTPC Cryostat										P	rocure	men	t and	Fab	Syste ricati	em I on	Des	sign																									
ND Muon Spectrometer												P	rototy	/pin	g Sys	ten	n D	esigr	ו	Pr	odu	ction							1														
ND Beam Monitoring															Syste	m (Des	sign								Pro	oduc	tion															
ND PRISM Movement Systen	n												S	yste	m De	esig	n			Pr	odu	ction																					

Near Detector: Resources

Near Detector Resources:

International resource plan developed. Next steps: refine plan, initiate MOUs.

Open questions:

- Impact of US 'Value Engineering' process
- Resource model for new tracking component 50000 for SAND. 40000

LBNF/DU

Near Detector: Interfaces

Between Near Detector Subsystems

- Detailed interfaces under development
- Key Items:
 - LArTPC & Muon Spectrometer: Intervening material, joint acceptance, coordinated PRISM
 - Magnetic interactions between systems

• Near Site Integration (NSI)

- Manages interface between Near Detector and NSCF
- Key Items:
 - Near Hall dimensions/details: Detector sizes, power, crane needs
 - PRISM: Movement technology, interferences, energy chain
 - Installation: NSI provides coordination (install. engineer, general techs), ND provides specialists

LBNF Cryogenics

- Provides LAr cryogenic system for ND LArTPC, LHe for SAND
- Key Items:
 - Cryogenics and PRISM movement

ND Interface Matrix A. Lambert

Review Agenda

Today: Introduction, Detector Descriptions

Tomorrow: System Design and Engineering

9:00 AM → 9:30 AM Responses to Committee Speakers: Dan Dwyer (LBNL), National Laboratory)	Questions from Day One Hirohisa Tanaka, Luca Stanco (INFN - Padova), Mich
9:30 AM → 9:45 AM Engineering Talks Overvio	ew (10'+5')
Speaker: Matthaeus Leitner	(LBNL)
9:45 AM → 11:00 AM ND LAr Detector Design	(50'+25')
Speaker: Andrew Lambert	(Lawrence Berkeley National Laboratory)
11:00 AM → 11:15 AM	Break
11:15 AM → 11:45 AM ND LAr Detector Cryost Speaker: Giorgio Vallone (tat Design (20'+10') (Lawrence Berkeley National Laboratory)
11:45 AM → 12:15 PM ND LAr Detector Protot	yping Program (20'+10')
Speaker: Igor Kreslo (LHEP	, University of Bern)
12:15 PM → 1:00 PM ND Temporary Muon Sp Speaker: Victor Guarino (Arg	ectrometer Design (30'+15') gonne)
1:00 PM → 1:30 PM ND PRISM Design (20'+10	ני
Speaker: Robert Flight (Univ. o	of Rochester)
ND PRISM Design R	
1:30 PM → 2:30 PM Executive Session Speaker: Francesco Terrano	Va (Univ. of Milano-Bicocca and INFN)

Thursday: SD&E (cont) and Key Interfaces

	9:00 AM → 9:30 AM	Responses to Committee Questions from Day Two
h		Speaker: Matthaeus Leitner (LBNL)
	9:30 AM → 9:50 AM	SAND 3DST Design (14'+6')
		Speaker: Chang Kee Jung (Stony Brook University)
I	9:50 AM → 10:10 AM	SAND TPC Design (14'+6')
		Speaker: Guillaume Eurin (CEA/IRFU)
l		
ł	10:10 AM → 10:30 A	M SAND STT Design (14'+6')
		Speaker: Roberto Petti (Univ. of South Carolina)
I	10:30 AM → 11:00 A	ND Cryogenics Systems Overview (20'+10')
		Speaker: David Montanari (Fermilab)
	11:00 AM → 11:15 A	N
	11:15 AM → 12:15 PM	ND Integration and Installation
		Speaker: Matthaeus Leitner (LBNL)
	12:15 PM → 2:00 PM	Executive Session
		Speaker: Francesco Terranova (Univ. of Milano-Bicocca and INFN)
		-
	2:00 PM → 2:30 PM	Review Closeout
		Speaker: Francesco Terranova (Univ. of Milano-Bicocca and INFN)
1		

Summary

DUNE Near Detector Development:

- Formal DUNE ND design effort initiated just over 1 year ago (Apr. 2019)
- Focus: delivering ND system essential for physics on 'Day-1'
- First two DUNE ND Consortia (ND-LAr, SAND) formally initiated May 2020

• Design Maturity:

- ND design advancing rapidly
- Day-1 design well-motivated by DUNE physics requirements
- Scope and Key Design Aspects are well-understood
- Schedule and costs developed commensurate with conceptual design
- Institutional partners working together coherently
- General interfaces established, to be formalized during next phase.
- Next:
 - Complete transition to ND Consortia, initiate Preliminary Design efforts

Backup

Electron Neutrino Appearance Rates

	Expected Events	(3.5 years staged per mode)
	u mode	$ar{ u}$ mode
$ u_e$ signal NO (IO)	1092 (497)	76 (36)
$ar{ u}_e$ signal NO (IO)	18 (31)	224 (470)
Total signal NO (IO)	1110 (528)	300 (506)
Beam $ u_e + \overline{\nu}_e$ CC background	190	117
NC background	81	38
$\overline{ u_{ au}} + \overline{ u}_{ au}$ CC background	32	20
$ u_{\mu} + ar{ u}_{\mu} CC$ background	14	5
Total background	317	180

