DUNE Near Detector: Physics and System Overview

Dan Dwyer DUNE Near Detector Conceptual Design Review 7-9 July 2020

Who am I

- Dan Dwyer
- Staff Scientist, LBNL
	- Technical Coordinator for DUNE ND-LAr Consortium
	- L2 Manager of the DUNE Near Detector
	- DOE Early Career Award for Pixel LArTPC technology
	- Background in ν physics with KamLAND, Daya Bay Experiments
	- APS Primakoff Award for "innovative contributions to neutrino physics"

Outline

- Context
- DUNE Physics
- The role of the Near Detector
- Near Detector Concept
- Scope and Key Design Aspects of Detectors
- Subsystem descriptions
- Near Detector Organization and Management
- Summary

Today's Charge

As part of the review, the committee should assess the following questions for the 'Day-1' DUNE-ND:

- 1. Are the DUNE-ND requirements sufficiently well understood and documented and are they sufficiently complete for proceeding with the designs of each element?
- 2. Do the designs address detector requirements? Are the designs feasible? Are the key technical specifications for the major DUNE-ND elements understood and addressed?
- 3. Have interfaces between detector elements been identified? Are the interfaces with the cryostat, cryogenic systems, facility, and installation sufficiently understood?
- 4. Are the scope and institutional responsibilities for the major elements defined? Is all essential scope covered?
- 5. Are plans for prototyping tests sufficient to validate viability of the designs?
- Do conceptual engineering models or schematics provide sufficient information to ascertain 6. constructability and functionality? Do conceptual engineering calculations validate the design?
- Have installation plans been sufficiently developed to give confidence that the detector elements can be 7. installed?
- 8. Have appropriate manufacturing methods been identified and have rough cost and schedule estimates been developed? Is the schedule to move forward towards preliminary design, prototyping, and production realistic?

Context: Near Detector Design Maturity

• **DUNE Near Detector Development:**

- Formal DUNE ND design effort initiated just over 1 year ago (Apr. 2019)
- Focus: delivering ND system essential for physics on 'Day-1'
- First two DUNE ND Consortia (ND-LAr, SAND) formally initiated May 2020

• **Design Maturity:**

- ND design is not as mature as Far Detector, but has shown rapid progress
- Design well-motivated by DUNE physics requirements
- Scope and Key Design Aspects are well-understood
- Active and successful prototyping program
- Institutional partners working together coherently

• **Next Steps:**

- Complete transition to ND Consortia, initiate Preliminary Design efforts

DUNE Physics and the Near Detector

DUNE Physics:

Accelerator Neutrinos:

- CP Violation
- Mass Ordering

Headline measurements

- Precision Mass and Mixing **Supernova Neutrino Bursts Baryon Number Violation BSM Searches**

DUNE Near Detector:

- In LBNF Beam (574m from target)
- At new underground site (62m deep)

Key Purpose: Enable the search for CP Violation

With ~10M neutrino events/yr, it will also provide a rich physics program all on it's own.

Physics Target for the 'Day-1' Near Detector

LBNF/DUNE

Predicting the Far Detector Signal

Near Detector:

Must enable a precise (better than ~4%) prediction of the FD appearance signal

Far Detector appearance signal: Oscillation $\frac{dN^{\rm far}_{\nu_e}}{dE_{\rm rec}}$ $D^{\rm far, inclus.}_{\nu_e-\rm CC}(E_{\rm rec};E_\nu) \; \sigma^{\rm inclus.,Ar}_{\nu_e-\rm CC}(E_\nu)$ $P_{\mu e}(E_{\nu})$ $\Phi^{\rm far}_{\nu_\mu}(E_\nu$ dE_{ν} **LArTPC response** ν**-Ar cross section Beam flux** *Existing model uncertainties: ~10% for each*

Near Detector: Concept Development

Step 1: Sketch Concept

Construct detector based on preceding physics discussion. ~25m long LArTPC to range ~5 GeV muons. ~30m wide LArTPC to provide off-axis data.

Step 3: Reality Check

Evaluated and endorsed by independent scientific review panel: Long Baseline Neutrino Committee (LBNC).

LBNC Closeout Report, July 2019

The LBNC strongly endorses the need for a ND containing a movable liquid argon TPC and magnetic spectrometer, and a fixed on-axis beam monitor. These are the minimum elements required for DUNE to achieve its physics goals, and are needed from the start of data-taking.

LBNF

Near Detector: Day-1 System Design

ND LArTPC: Description

ND LArTPC: Key Design Aspects

LArTPC Minimum Size:

7m wide by 3m tall by 5m deep in beam direction.

Required by coverage of neutrino cross-section, not by simple detector efficiency

Fraction of events in 'bad' kinematic space (< 5% acceptance)

LBNF/L

ND LArTPC: Key Design Aspects

Near Site Neutrino Intensity:

ND LArTPC must cope with beam neutrino pileup:

- 20-30 interactions within LArTPC per ~10 μs beam spill
- Many more signals from neutrino interactions outside active region, particularly rock muons.

Charge signals:

Appear ~simultaneous, relative to drift time: ~1.6 mm/μs

Light signals:

Enable ~ns signal separation, if accurately associated with corresponding charge signal

Overcoming Pileup:

Pixelated charge readout (LArPix):

Provides unambiguous 3D charge readout

Optical modularity, high photodetector coverage:

Achieve high efficiency/accuracy for charge-to-light signal association.

LBNF/DL

ND LArTPC: Partners

Subsystem Institutions

Module Structure Univ. of Bern HV Univ. of Bern Field Structure SLAC, CSU

TPC Module Install. All

Charge Readout LBNL, Caltech, CSU, Rutgers, UC-Davis, UCSB, UPenn, UTA Light Readout JINR, Univ. of Bern Calibration MSU, JINR, Univ. of Bern TPC Module Integ. LBNL, CSU, Univ. of Bern

Temporary Muon Spectrometer (SSRI): Description

Magnetized Muon Range Stack:

- Sandwich of 100 steel plates & scintillator strip trackers
- 7m (wide) x 3.2m (tall) x 7m (in beam direction)
- Conventional coils to provide magnetic field
- Moves off-axis with ND LArTPC

Temporary Muon Spectrometer (SSRI): Key Design Aspects

Detector Size:

- Face: 7m (wide) x 3.2m (tall), to match LArTPC
- Depth: 7m (in beam direction), to range 5 GeV muons

Number of tracking planes:

To achieve muon energy resolution on par with FD (~4%)

Tracker Spatial Resolution & Magnetic Field:

To precisely measure neutrino/antineutrino composition

Tracker Time Resolution:

PRISM: Description

PRISM:

Enable the ND LArTPC and Muon Spectrometer to make measurements away from the beam axis.

Components:

Motorized skates:

Support and drive detector motion on rails integrated into floor **Energy Chain:**

Flexible conduit to maintain utilities (power, cryo) to detectors

Monitoring:

Instruments to track detector position

PRISM: Key Design Aspects

Travel Distance:

Travel to 30m off-axis covers neutrino energies from 0.5-5 GeV

Weight:

Must support ~700-ton Muon Spectrometer, ~300-ton LArTPC

Utilities:

Energy chain must provide detector utilities, LArTPC cooling (LN)

LBNF/DUNE

SAND: Description

SAND:

System for on-axis Neutrino Detection. **Purpose:**

Monitor stability of neutrino beam intensity, energy spectrum, and spatial profile.

Components:

Reuse Existing KLOE Detector Systems:

- Electromagnetic Calorimeter
- Superconducting solenoid
- Iron yoke

New Tracker:

- 3D plastic scintillator tracker
- Straw tubes or TPC

SAND: Key Design Aspects

Beam Monitoring Requirements:

- Identify neutrino interaction position/time
- At minimum: reconstruct muon energy
- If able to reconstruct neutrino energy, the sensitivity to variations improve (i.e. faster, or using less target mass).
- Must tolerate pileup

Relation to Near Detector 'Reference Design'

'Reference' Near Detector Design:

DUNE Collaboration goal: Replace the Muon Spectrometer with a more performant detector: ND-GAr

ND-GAr Detector:

Gas argon TPC:

1-ton argon in a ~6m diameter 10-bar pressure vessel **Calorimeter:**

Based on CALICE design, located outside pressure vessel

Superconducting Magnet:

Exploring design options

Physics Motivation:

Delivers more precise characterization of ν-Ar interactions, powerful constraint on neutrino interaction models. Likely needed for ultimate DUNE sensitivity.

DUNE Strategy:

Collaboration will continue to develop ND-GAr design, replace Muon Spectrometer once resources & plan established.

Near Detector: Organization

Near Detector Consortia / Design Groups:

ND-LAr Consortium:

Consortium Lead: Michele Weber Technical Lead: Dan Dwyer

ND-GAr/Muon Spectrometer Design Group:

Design Group Leads: Alfons Weber, Alan Bross Technical Lead: Tom LeCompte

ND Beam Monitor - SAND Consortium:

Consortium Lead: Luca Stanco Technical Lead: (tbd.)

ND DAQ Task Force:

Task Force Lead: Asher Kaboth

Example Consortium Structure

Near Detector: Schedule

Near Detector: Resources

Near Detector Resources:

International resource plan developed. Next steps: refine plan, initiate MOUs.

Open questions:

- Impact of US 'Value Engineering' process
- Resource model for new tracking component 50000 for SAND.

LBNF/DU

Near Detector: Interfaces

• **Between Near Detector Subsystems**

- Detailed interfaces under development
- Key Items:
	- LArTPC & Muon Spectrometer: Intervening material, joint acceptance, coordinated PRISM
	- Magnetic interactions between systems
- **Near Site Integration (NSI)**
	- Manages interface between Near Detector and NSCF
	- Key Items:
		- Near Hall dimensions/details: Detector sizes, power, crane needs
		- PRISM: Movement technology, interferences, energy chain
		- Installation: NSI provides coordination (install. engineer, general techs), ND provides specialists
- **LBNF Cryogenics**
	- Provides LAr cryogenic system for ND LArTPC, LHe for SAND
	- Key Items:
		- Cryogenics and PRISM movement

ND Interface Matrix *A. Lambert*

Review Agenda

Today: Introduction, Detector Descriptions

Tomorrow:

System Design and Engineering

Thursday: SD&E (cont) and Key Interfaces

Summary

• **DUNE Near Detector Development:**

- Formal DUNE ND design effort initiated just over 1 year ago (Apr. 2019)
- Focus: delivering ND system essential for physics on 'Day-1'
- First two DUNE ND Consortia (ND-LAr, SAND) formally initiated May 2020

• **Design Maturity:**

- ND design advancing rapidly
- Day-1 design well-motivated by DUNE physics requirements
- Scope and Key Design Aspects are well-understood
- Schedule and costs developed commensurate with conceptual design
- Institutional partners working together coherently
- General interfaces established, to be formalized during next phase.
- **Next:**
	- Complete transition to ND Consortia, initiate Preliminary Design efforts

Backup

Electron Neutrino Appearance Rates

