REQUIREMENTS FOR THE DUNE NEAR DETECTOR

H. A. Tanaka DUNE Near Detector 30% Design Review 14-16 July 2020

Who am I

- Researcher at SLAC, Stanford University
- Member of DUNE since 2018
- Participant in some other neutrino experiments, such as T2K

OUTLINE

- DUNE long baseline physics goals . . . particularly CP violation
- The role of the DUNE Near Detector
- Quick overview of DUNE Near Detector
 - a few important features
- Review of Requirements
- Summary

PHYSICS GOALS OF DUNE

- Scope: CP violation in long-baseline neutrino oscillations
- "Initial" goal
 - Reach 3 σ significance for maximal CPV (δ_{CP} = - $\pi/2$)
 - Advance world knowledge on DUNE's primary physics goal
- "Nominal" goals:
 - (3,5) σ observation for (75, 50)% of δ_{CP} values ("P5 goal")
 - δ_{CP} precision 10°, 20° for $\delta_{CP} = 0, -\pi/2$
 - \implies Initial/Nominal requirements:
- *n.b.*:
 - Additional physics topics where the near detector is relevant/central
 - these will not be discussed here
 - TDR Staging Assumptions:
 - Beam Power : Year 1: 1.2 MW, Year 6- 2.4 MW
 - Detectors: Y1: 20 kt, Y2-3: 30 kt, Y4-: 40 kt

Physics Milestone	Exposure (staged years, $\sin^2 heta_{23} =$ 0.580)
5σ Mass Ordering	1
$\delta_{\rm CP} = -\pi/2$	
5σ Mass Ordering	2
100% of $\delta_{ m CP}$ values	
3σ CP Violation	3
$\delta_{\rm CP} = -\pi/2$	
3σ CP Violation	5
50% of $\delta_{ m CP}$ values	
5σ CP Violation	7
$\delta_{\rm CP} = -\pi/2$	
5σ CP Violation	10
50% of $\delta_{ m CP}$ values	
3σ CP Violation	13
75% of $\delta_{ m CP}$ values	
δ_{CP} Resolution of 10 degrees	8
$\delta_{ m CP}=0$	
$\delta_{ m CP}$ Resolution of 20 degrees	12
$\delta_{\rm CP} = -\pi/2$	
$\sin^2 2 heta_{13}$ Resolution of 0.004	15

MORE FORMALLY

O(10%) uncertainty in each component

$$N_{FD}(\nu_{\alpha} \to \nu_{\beta}, E_{REC}) = \int dE_{\nu} \times \Phi(\nu_{\alpha}, E_{\nu}) \times P(\nu_{\alpha} \to \nu_{\beta}, E_{\nu}) \times V \times n \times R(\nu_{\beta}, E_{REC}, E_{\nu}) \times \sigma(\nu_{\beta}, E_{\nu})$$

DUNE global science requirement

ND measurements shall be of sufficient precision to ensure that when extrapolated to FD to predict the FD event spectra, the associated systematic error must not dominate the measurement precision.

• *n.b.:*

- The far detector (FD) is a LArTPC
- ND operates in the near detector hall
- What FD measures involves both R and σ
 - R depends on what particles emerge, how the detector responds
 - · each must be modelled accurately to predict the observables
- Backgrounds introduce additional considerations
 - Predicting the signal has critical systematic uncertainties that must be addressed as shown here

DUNE ND Overarching Requirements

- Predict the observed spectrum of neutrino interactions at FD
 - ND-01 Transfer measurements to the FD
 - ND-O2 Constrain the cross section model
 - ND-O3 Measure the neutrino flux
 - ND-04 Obtain measurements with different fluxes
 - ND-05 Monitor time variation of the neutrino beam
 - ND-06 Operate in high rate environment

STRUCTURE OF DUNE ND REQUIREMENTS

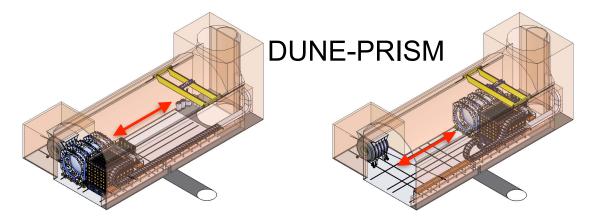
- Overarching:
 - Broad statements on needed "deliverables" from the ND for the DUNE long baseline analysis
- Measurements:
 - What measurements are performed at the ND to fulfill the overarching requirements? and how well?
 - These are in principle subsystem agnostic but are assigned to specific subsystems to carry out
 - I will introduce **10 measurement requirements (ND-MX)** to fulfill the overarching requirements
- Capabilities:
 - What capabilities do the ND systems need to perform the measurements?
 - These capabilities are assigned to specific subsystems which will carry out the measurements
 - I will breeze through these (ND-CX) and leave further discussion to system-specific talks.
- Technical:
 - What technical/physical characteristics does the subsystem need to have these capabilities?
 - These are still in development and will be addressed in the following talks

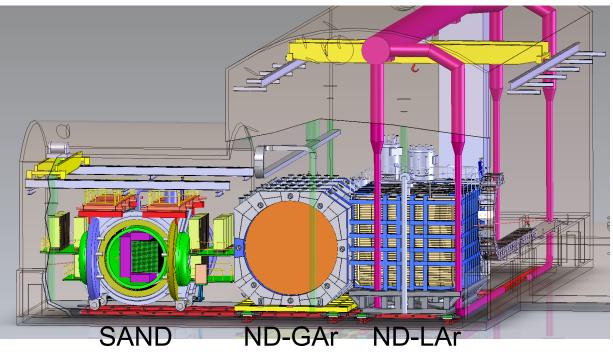
TARGET UNCERTAINTIES:

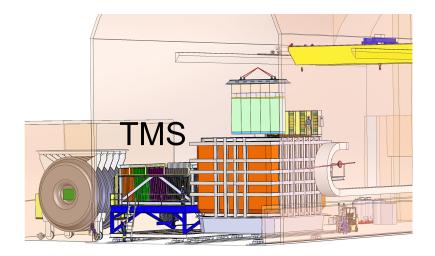
FHC ("*v*-mode") 3.5 Staged Years

	normal ordering				
	δ _{CP} =0	δ _{CP} =-π/2	Variation		
$ u_{\mu} \rightarrow \nu_{e} $	1155	1395	0.21		
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	19	14			
Beam $\nu_e + \bar{\nu}_e$	228	228			
Other bkg	135	134			
Total	1537	1771	0.15		

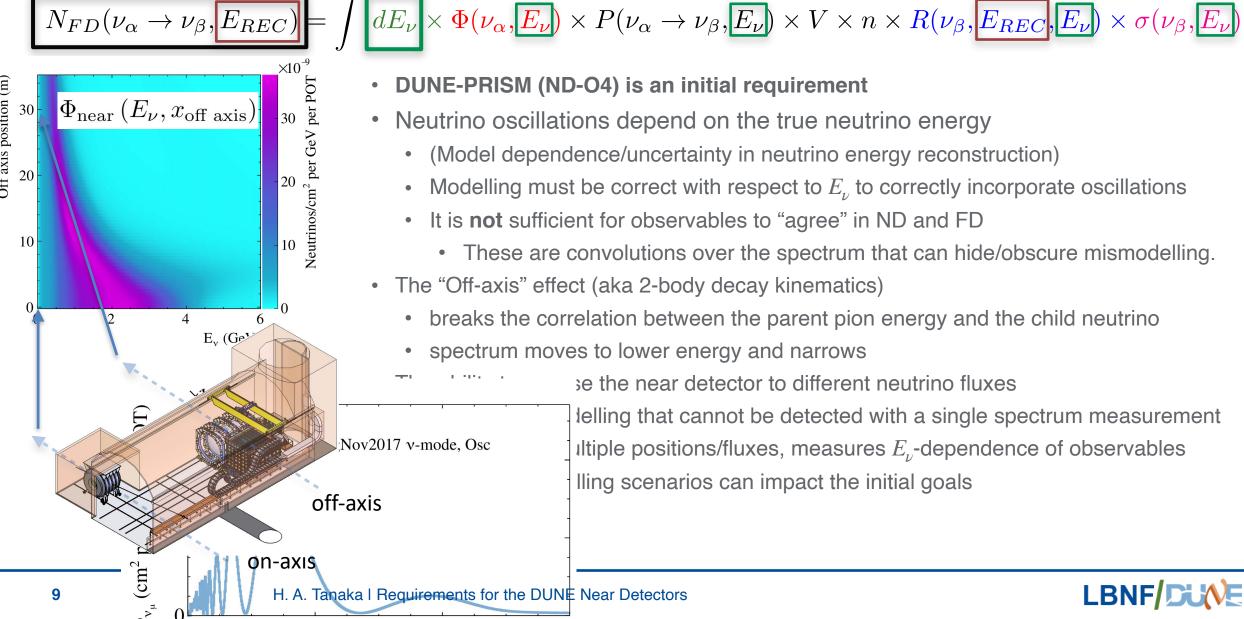
RHC ("V-mode") 3.5 Staged rears					
	normal ordering				
	δ _{CP} =0	Variation			
$ u_{\mu} \rightarrow \nu_{e} $	81	95			
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	236	164	0.44		
Beam $\nu_e + \bar{\nu}_e$	145	145			
Other bkg	68	68			
Total	530	475	0.12		


DUC ("Timodo") 2 5 Staged Veare


Maximal CPV is in principle a large effect


- diluted to ~15% variation in $\nu_e/\bar{\nu}_e$ events by backgrounds
- To detect this, one roughly needs:
 - <5% total (stat. + sys.) error to achieve 3 σ significance
 - <3% total (stat. + sys.) error to achieve 5 σ significance
- aim for balance of statistical/systematic error
 - Initial target for total systematic error: < ~3%
 - Nominal target for total systematic error: < ~2%
- *n.b.*:
 - T2K/NOvA achieve ~7-8% uncertainty in this metric after O(decade) of operation/analysis
- This will guide the measurement requirements in what follows

The DUNE NEAR DETECTOR (ND)



- ND-LAr:
 - LArTPC in 1 (w) x 3 (h) x 1 (d) m³ modules
 - 67 tons of fiducial mass in a 7x5 array
- ND-GAr:
 - Magnetized 10 Atm GAr TPC (~1 ton of target)
 - Electromagnetic calorimetry and muon detection system
 - Downstream muon spectrometry for ND-LAr
 - can be temporarily fulfilled with magnetized iron spectrometer (**TMS**) in "initial" requirements.
- SAND:
 - On-axis beam monitoring system
 - Plastic scintillator target surrounded by gaseous tracking chambers in the KLOE magnet+ECAL system
- DUNE-PRISM
 - Movement of ND-LAr/(TMS/ND-GAr) up to 30.5 meters to sample off-axis neutrino fluxes

DUNE-PRISM

DUNE-PRISM (ND-O4) is an initial requirement

- Neutrino oscillations depend on the true neutrino energy
 - (Model dependence/uncertainty in neutrino energy reconstruction)
 - Modelling must be correct with respect to E_{ν} to correctly incorporate oscillations
 - It is not sufficient for observables to "agree" in ND and FD
 - These are convolutions over the spectrum that can hide/obscure mismodelling.
- The "Off-axis" effect (aka 2-body decay kinematics)
 - breaks the correlation between the parent pion energy and the child neutrino
 - spectrum moves to lower energy and narrows
 - se the near detector to different neutrino fluxes

felling that cannot be detected with a single spectrum measurement Itiple positions/fluxes, measures E_{ν} -dependence of observables lling scenarios can impact the initial goals

LBNF DU

18 Near Detector Data Run I May05-Aug05 Run III Nov07-Jan08 Run V Mar10-Mav10 Run I Sep05-Nov05 Run III Feb08-Apr08 Run VI May10-Jul10 16⊨ MINOS Events/10¹⁶ POT Run III May08-Jul08 Run X Oct11-Nov11 Run I Dec05-Feb06 Run III Aug08-Sep08 Run II Sep06-Nov06 Run X Dec11 14 Bun II Dec06-Jan0 Run X Jan12-Feb12 Run X Mar12-Apr12 Run II May07-Jul07 Average Run III Mar09-Jun09 10E v_{μ} Mode 2 3 5 Reconstructed v Energy (GeV)

NT02

NT01

- each picture has a story that either stopped or changed the neutrino beam
- Most dramatically, components can fail and stop operations
- However, they also just change without failing, changing the neutrino flux
 - As we scale the intensity frontier, beam monitoring will be more important than ever

BEAM MONITORING A high intensity neutrino beamline with ~1 MW proton beam is a vibrant environment

ND-01/02: TRANSFER MEASUREMENTS TO FD, CONSTRAIN MODEL

ND-O1	Transfer measurements to	the FD	Measurements at the ND must be in order to minimize systematic un		to the FD	•
Label	Description	Spec.	Rationale	System	Ref. Req.	
ND-M1	Classify interactions and measure outgoing particles in a LArTPC with performance com- parable to or exceeding that of the FD	N/A	The ND must have a LArTPC with reconstruction capabilities comparable/exceeding the far detector in order to effectively transfer measurements.	ND-GAr, ND-LAr	ND-01, ND-02	•
ND-M2	Measure outgoing par- ticles in ν -Ar interac- tions with uniform ac- ceptance, lower thresh- olds than a LArTPC, and with minimal sec- ondary interaction ef- fects	N/A	The ND must measure outgoing recoil particles (π, p, γ) in ν -Ar interactions to ensure that sensitive phase space is properly modeled.	ND-GAr	ND-01, ND-02	-

- **ND-M1:** address "transferability" by ensuring relevant FD observables can be reproduced in ND
 - Presupposes a LArTPC component of the ND (ND-LAr)
 - requirements pertain to events observed in ND-LAr
 - performance must be comparable/better than FD
- **ND-M2:** address limitations of LArTPC to probe neutrino interactions that arise generically from density of LAr
 - secondary interactions, thresholds, sign selection, etc.
 - more specific issue arise from size constraints of ND-LAr

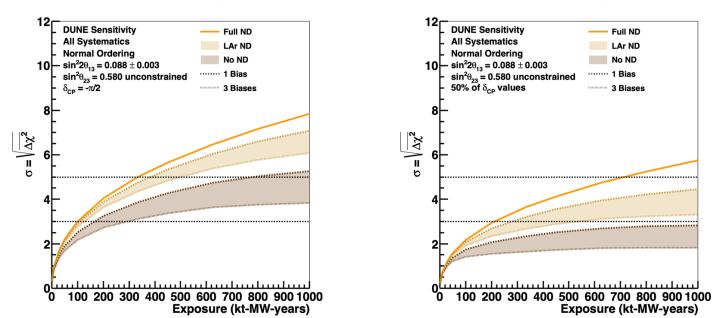
LBNF/

- Capability requirements for ND-M1 (ND-LAr) : based on that currently demonstrated in FD
 - Efficiency, purity, E_v resolution for v_μ/v_e CC events, detection thresholds for individual particles
 - · Containment requirements for muons and hadrons:
 - muons: requires spectrometer downstream with resolution comparable/better than LAr range
 - hadrons: full containment for a fraction of events across phase space of E_v, E_{had→} requirements on ND-LAr active volume

ND-01/02: TRANSFER MEASUREMENTS TO FD, CONSTRAIN MODEL

- Case study of discrepancy in pion production model in two generators (NuWRO, GENIE)
 - introduces large biases/systematics into extraction of δ_{CP}
- ND-LAr will allow a limited correction for these channels (ND-M1) \rightarrow large biases/systematics remain

Full ND


LAr ND

No ND

····· 1 Bias

3 Biases

ND-GAr can make clean channel specific corrections (ND-M2) \rightarrow biases significantly reduced

Impact on Initial goal:

3 σ for maximal CP violation: not much

CP Violation Sensitivity

• 5 σ : 30% more exposure (note staging)

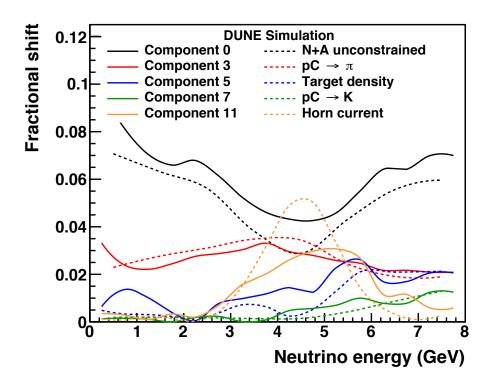
Takeaways:

- Initial goals can be met without ND-M2
 - TMS can deliver the required muon spectrometry capabilities for ND-LAr
- Anything beyond detecting maximal CPV requires ND-M2 (ND-GAr)

Impact on Nominal goals: for non-maximal CP:

• Year 5: 3 σ for 50% δ_{CP} requires significantly more exposure

Exposure (kt-MW-years)


• Year 10: 5 σ for 50% δ_{CP} possibly **never met**

ND-O3: FLUX MEASUREMENTS

ND-O3	Measure the Neutrino Flux by <i>ab initio</i> modeling of the n			5	
			Ļ		
ND-M3	Measure the ν flux using neutrino-electron scattering	N/A	The ND must measure the flux with ν -e scattering, a standard candle that provides a normalization measurement.	ND-LAr	ND-03
ND-M4	Measure the neutrino flux spectrum using the 'low- ν ' method	N/A	The ND must identify/measure low recoil events which have flat energy dependence in order to measure the spectrum.	ND-LAr, ND-GAr	ND-03

- Expected ab initio uncertainties on absolute neutrino flux is ~5-7%
 - Relative flux at ND/FD constrained to ~1.5%
- ND-M3: constrain the total flux* with v-e scattering
 - leptonic "standard candle" providing flux normalization
 - initial: verify ab initio model to ~5%
 - nominal: constrain flux to 2% (cf. target of 3% total uncertainty)
- Capability Requirements (ND-LAr) for ND-M3:
 - sufficient fiducial mass: very small cross section
 - reconstruct forward lone electron (energy/angle resolution)
 - reject: photons from $\pi^{0}s,\,v_{e}$ CC interactions

- ND-M4: use "low-v" method
 - ~constant σ for low-E_{had} events to measure shape of flux
 - initial: no requirements
 - nominal: 5% measurement >1 GeV

*decomposition of flavor is needed to verify primary ν_{μ} (FHC), $\bar{\nu}_{\mu}$ (RHC) flux (see next slide)

ND-O3: FLUX MEASUREMENTS

ND-03	Measure the Neutrino Flux	The ND must constrain the flux beyond what is achieved by <i>ab initio</i> modeling of the neutrino beam
ND-M5	Measure the wrong sign N/A contamination	The ND must measure and vali- ND-GAr ND-O3 date the modeling of wrong-sign interactions that dilute the oscil- lation asymmetries at the FD.
ND-M6	Measure the intrinsic N/A beam $ u_e$ component	The ND must measure and val- ND-LAr, ND-O3 idate the modeling of this irre- ND-GAr ducible background

FHC (ν) 3.5 Staged Years

	normal ordering				
	δ _{CP} =0	δ _{CP} =-π/2		2.5.040.0	
$\nu_{\mu} \rightarrow \nu_{e}$	1155	1395	RHC (ν)	3.5 Stage	
$\overline{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}$	19	14		normal	ordering
				δ _{CP} =0	δ _{CP} =-π/2
Beam $\nu_e + \bar{\nu}_e$			$\nu_{\mu} \rightarrow \nu_{e}$	81	95
Other bkg	135	134	/	236	164
Total	1537	1771	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$		
			Beam $\nu_e + \bar{\nu}_e$	145	145
			Other bkg	68	68

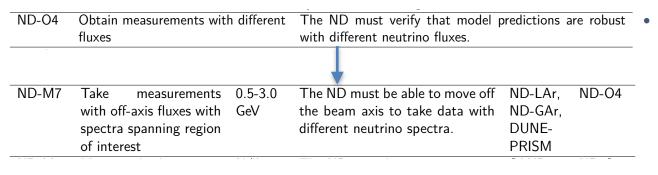
Two ~irreducible backgrounds in FD:

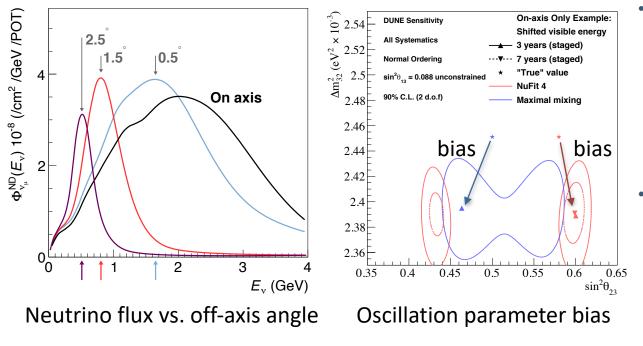
- ND-M5: "wrong-sign" contribution
 - much worse in RHC
 - initial: (10/40*)% in RHC/FHC
 - **nominal:** (5/20*)% in RHC/FHC
 - Capability requirements (ND-LAr, TMS):
 - sign-selected measurement of v_{μ} -CC at ND-LAr in spectrometer

ND-M6: beam v_e component

- Dominant background for v_e analysis
 - initial: 5%

475


- **nominal**: 2%
- Capabilities requirements (ND-LAr):
 - fulfilled by related ND-M3 requirements to *identify v-e events*


*FHC requirements are driven by verifying ν_{μ} flux in conjunction with $\nu - e$ elastic measurement, not the wrong sign contribution to the v_e appearance

530

Total

ND-O4: MEASUREMENTS WITH DIFFERENT FLUXES

ND, FD observations are convolutions over the spectrum of incident neutrinos

- breaking degeneracy requires control over incident spectrum
- ND-M7: move ND-LAr+TMS/ND-GAr to off-axis positions
- "DUNE-PRISM"
- Case study shows bias in sin² θ_{23} , $P(\nu_{\mu} \rightarrow \nu_{e})$, beyond initial error budget
 - resolvable by taking data off-axis
 - DUNE-PRISM is needed for initial goals
- Capability Requirements for ND-M7 (DUNE-PRISM):
 - span region of interest (0.5-3.0 GeV)
 - maintain uniform measurement capability (~1%)
 - place ND-LAr/ND-GAr with sufficient granularity/precision
 - minimize downtime for motion (<8 hours)
 - regular suite of measurements (~1 year)


ND-05: BEAM MONITORING

ND-O5 Monitor time variation of the neu- trino beam			- The ND must detect potential variations in the neutrino flux.		
-	-		Ļ		
ND-M8	Monitor the beam rate on-axis	N/A	The ND must have a component that remains on-axis where beam monitoring is most sensitive and collects a sufficient number of ν_{μ} CC events.	SAND	ND-05
ND-M9	Monitor the beam spec- trum on-axis	N/A	The ND must use spectrum infor- mation to detect representative changes in the beam line.	SAND	ND-O5

- Requirements studied with representative potential beam variations informed from past experience
 - n.b. the requirement is to detect variations, not to diagnose them
- Capability requirements for ND-M8, M9 (SAND):
 - p_{μ}/E_{ν} resolution: better than ~1 GeV to resolve features
 - higher statistics/mass required if monitoring with p_{μ} only
 - sufficient mass: (20/5) tons p_{μ}/E_{ν} based monitoring
 - vertexing: place interaction left/right, above/below beam center

- High statistics neutrino-based monitoring needed to "quickly" (~1 week) identify variations
 - Rate needs to
 - On-axis spectrum is important to identify variations
 - some variations do not change overall rate
 - Due to DUNE-PRISM, a dedicated on-axis monitor is required (SAND)

shifted / nominal

LBNF/DUNE

ND-O6: HIGH RATE ENVIRONMENT

- Due to the intense 1.2 MW LBNF beam, expect ~0.2 interactions/ton of material
 - Backgrounds from external interactions
 - hall, inactive detector elements, other detectors, etc.
 - Pileup from interactions within the active/fiducial volume of a detector
 - Measurement requirement (ND-M10):
 - subsystems must be able to verify that the backgrounds are adequately modeled
- Primary means for reducing backgrounds/isolating interactions is timing
- Capability requirements:
 - 10 µsec spill with O(100) interactions \rightarrow 20 nsec on products from an individual interactions
 - commensurate inter-detector timing (modules in ND-LAr, between ND-LAr, TMS/ND-GAr)
 - ND-GAr has further timing requirements for t₀ determination for the TPC (under study)
 - KLOE ECAL timing requirements driven by directionality determination

SUMMARY

- Initial and nominal requirements are considered based on the corresponding DUNE physics goals
 - "initial" = 3 σ sensitivity to maximal CP violation
 - "nominal" = further goals, including CP coverage at 3,5 σ ("P5") and δ_{CP} precision
 - Even "initial" goals require systematic error well beyond what is currently achieved.
 - Each source of error must be addressed by DUNE-ND to meet the goals
- ND requirements are hierarchical
 - start with the global science requirement to predict the observed spectrum of neutrino interactions at FD
 - overarching \rightarrow measurements \rightarrow capabilities (\rightarrow technical)
 - These have recently been approved by the DUNE Executive Board
- The reference design LBNC and a conceptual design review
- Initial and nominal requirements are presented
 - Initial requirements should be satisfied by the proposed "Day 1" system to meet the initial goal of 3 σ sensitivity to maximal CP violation

LBNF

- Notably, the muon spectrometry capabilities requirements of TMS are sufficient
- Reaching nominal goals on CP violation require additional capabilities beyond the "Day 1" system