DUNE ArgonCube ND LArTPC

Michele Weber, Dan Dwyer CDR review, 7-8-9 July 2020

Near Detector Requirements

2

History: ArgonTube

- Longest possible drifts for largest masses of LAr
- 5m ionization electron drift achieved
- Studied the physics of voltage breakdowns in LAr and identified limitations of field (40 kV/cm).
 Identified possible mitigation.
- Achieved >350 kV with insitu generation of HV

3

Modular approach (2014)

- Short horizontal drift, "low" HV, less stringent purity requirement (robust, low risk)
- Independent modules
- Common bath to all modules
- Thin walls separating modules
- Modules can be removed for maintenance and upgrade
- Distributed production
- Cold electronics, pixels ?

for these and other reasons (e.g. light containment) !

Near Detector Requirements

DUNE 'Day-one' Near Detector System

Near Detector LArTPC Design

Key Design Features:

Active size:

5m deep, 7m wide, 3m tall \rightarrow For ν signal containment

Signal rate: ~10 M / yr

Modular design:

- 5 x 7 hermetic TPC modules
- 3m active height
- Minimal inactive material
- Material density (G10) similar to LAr
- Short drift (50 cm)
- Pixelated charge readout
- Optical segmentation
- High-performance light detection
- → System reliability and capability to operate in high-rate environment
- Operation for 10-20 year with
- accessibilty for repair / upgrades

Height and length for hadronic containment

Figure 2.22: The cross section coverage, defined in the text, is shown for various <u>LArTPC</u> heights (left) and widths (right) as a function of true neutrino energy. In each plot, the other two dimensions are held constant at the baseline values while the third is varied. The optimal dimensions for hadron containment are determined to be $4 \text{ m} \times 3 \text{ m} \times 5 \text{ m}$.

Width determined by the muon

• To contain muons emitted at large angles with respect to the beam, a width of 7m is required.

Figure 2.23: Muon acceptance shown as a function of true muon kinetic energy and angle with respect to the neutrino beam (left), and projected onto the muon kinetic energy axis for small angles (right). The acceptance includes muons contained in the LArTPC as well as those that stop in the MPD electromagnetic calorimeter (ECAL) or match to tracks in the high-pressure gaseous argon TPC (HPgTPC).

Event rate

Figure 2.27: The rate of <u>CC</u> interactions in the fiducial volume of <u>ArgonCube</u> as a function of true neutrino energy, expressed per year of exposure assuming 1.2 MW beam intensity in <u>FHC</u> (left) and RHC (right) beam polarity.

Flux constraint

Figure 2.29: Rate+shape and shape-only bin-by-bin flux uncertainties as a function of neutrino energy for a five year exposure of the baseline 1.2 MW beam, with various detector options, compared with the input flux covariance matrix before constraint.

ArgonCube ND LArTPC Consortium

ArgonCube ND LAr Consortium

- LBNL
- RAL
- U Rochester
- U Pennsylvania
- ANL
- Rutgers U
- U Iowa
- U Minnesota
- U Oxford
- Fermilab

- UCSB
- Wichita State U
- William and Mary
- U Bern
- Caltech
- CSU
- SLAC
- UC Irvine
- UC Berkleley
- U Sheffield

- U Manchester
- York U
- JINR
- U Lancaster
- ANL
- Tufts U
- UC Davis
- U Cambridge
- UTA

Organization: DUNE ND LArTPC ArgonCube Consortium

Interfaces

- DUNE Near Detector Consortia
 - International bodies responsible for delivering detector systems
- ND LArTPC Cryostat
 - Multiple interfaces: Mechanical, electrical, cryo, etc.
 - Cryostat engineer is also ND LArTPC Lead Engineer
- LBNF Cryogenics
 - Provides LAr cryogenic system for ND LArTPC
- Near Site Integration
 - Manages interface between Near Detector and NSCF
 - Installation of Near Detector System
 - NSI provides coordination: installation engineer, general technician team
 - · ND provides support: scientific labor and technical experts

ND Interface Matrix

Module Structure

Five Module Set

Prototype Module

Key Design Features:

Module structure optically isolates each TPC

- ightarrow Containment/localization of scintillation light
- ightarrow Helps LAr purification cycle
- \rightarrow HV per module/set, to reduce systemwide HV risks
- ightarrow 'Swappable' to simplify repair, upgrades

Stainless steel top flange

→ Provides interfaces for cryogenics, HV, instrumentation, detector readout

Fiberglass (G10) 'structure' → Robust seal → Low-profile: maximizes active volume → Similar density to LAr; reduce signal distortion

Module instrumentation and fittings → Monitor module LAr level, temp, pressure → Manage LAr flow through module

TPC Module Concept

Cathode and Field Cage

Charge & Light Readout Anode TPC Assembled (Cath, FC, + 2 Anodes)

Module

Field Structures

Cryogenic test of resistive sheet (GOhm / square) laminated on G10 panel @ SLAC

Key Design Features:

Central cathode, dual anode with 50cm drift regions \rightarrow Short drift reduces required HV and assoc. risks

Resistive polyamide sheet laminated on G10 panels → Reduces risks from accidental HV discharge → No resistor chain; reduce single-point failure risk → Low-profile: maximizes active volume

All G10 construction → Similar density to LAr; reduce signal distortion → Compatible thermal contraction at LAr temp

Resistive sheet LArTPC @ BERN

Module with charge and light readout

CDR 30% Review TPC ArgonCube

20

Pixelated Charge Readout

Prototype pixel tile, O(1k) channel

Small shower imaged using LArPix-v1 system

Key Design Features:

Pixelated charge readout tiles, ~4mm pitch

- → True 3D imaging; no projective ambiguities
- \rightarrow Overcomes signal pileup at DUNE Near Site
- \rightarrow Mechanically robust, less sensitive to noise pickup
- \rightarrow Scalable design leverages commercial production

LArPix: Custom pixel readout ASIC

- \rightarrow Provides low-noise, low-power, cryogenic readout
- \rightarrow SOC: amplification, digitization, triggering, readout
- \rightarrow Implements highly-scalable control, I/O architecture

LArPix Controller System

→ Leverages commercial Zynq (CPU+FPGA) system with simple custom interface PCB to control large-scale pixel system (~1 controller per 50k pixel channels)

LArPix-v1 ASIC

LArPix-v2 ASIC

LArPix-v2 Controller

DU(VE

Unambiguous readout

3 GeV ve simulated in BNL's Wire-Cell

Timing / Light

- Unambiguous charge R/O allows to reconstruct "busy" events
- Still difficulties due to pile-up:
 - Spill (10 μs) < Drift window (250 μs)
- Use light info to associate isolated/detached deposits to the correct vertex – fast neutrons
 - Contained prompt scintillation
 - <20 ns resolution</p>

Advanced Light Readouts

ArcLight: Dichroic light-trap design

TPB 3M DF-PA Chill EJ-280 Green WLS Plastic

3M Vikuiti ESR

Key Design Features:

Fully-dielectric SiPM-based light collectors

Two designs

- → Dielectric: tolerant of high field gradients
- \rightarrow High-coverage: covers ~75% of field cage
- → Enables localization of light signals, correlation to charge
- → Combined with optical modularity, improves discrimination of pileup at DUNE Near Site

LCM: Fiber-bundle based light collection module

ND LArTPC ArgonCube Technology R&D

Technology Prototypes (2016-2018)

Enhanced Light Readout

Pixel Charge Readout

Resistive Field Cage and Cathode

Modular TPC Design

Near Detector Prototype (2019-2021)

ArgonCube 2x2 Demonstrator \rightarrow 4 LArTPC modules, 3-tons active volume

Operate at Bern in late 2020, then in NuMI Neutrino beam in 2021

ArgonCube 2x2 Demonstrator: Recent Progress

Single Cube

Cryogenics and Purity Testing System Bern

Hermetic Module Assembly Bern

LArPix-v2 Charge Readout Testing

Field Cage Lamination SLAC

Tests of Module Assembly and Cryo-robustness CSU

ProtoDUNE-ND: ArgonCube 2x2 @ NuMI

Stepping-stone to Near Detector

NuMI neutrino rates and energy spectrum similar to planned DUNE LBNF beam

Goals:

- \rightarrow Underground integration, operation
- ightarrow Neutrino signal identification and reconstruction
- \rightarrow Pileup rejection
- \rightarrow Track matching with tracking detector (Minerva)

Aiming for operation in 2021

NuMI Near Underground Hall

ND LArTPC ArgonCube

18,00

TPC Module Integration and Testing

Costs

- BoE cost estimates available
- Detailed costing exercise planned after CDR review
- ArgonCube ND LAr TPC 131.02.03.02, CORE / M&S ONLY:
 - 01 Module structure: 2.4 M\$ (Switzerland)
 - 02 High Voltage: 0.8 M\$ (Switzerland
 - 03 Field Structures: 2.7 M\$ (USA)
 - 04 Charge Readout: 1.7 M\$ (USA)
 - 05 Light readout: 3 M\$ + 2.4 M\$ (JINR + Switzerland)
 - 06 Calibration: >0.2 M\$ (not all systems defined)
 - 07 Module integration and testing: 1.8 M\$ (USA + Switzerland)
 - 08 TPC module installation: no core

Summary schedule

	Y 20 CY 2019					CY 2020				CY 2021				CY 2022				СҮ	2023			CY 2	- 2024		CY 2025				CY 2026					CY 2027				CY 2028				CY 2029		
Category	Q,4	Q	L Q	2 Q.	3 Q.4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 Q	(4 Q)	1 Q2	2 Q.	3 Q4	Q	L Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q,4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 (01	Q2 0	13 Q4	
CD Milestone												◆ c	D-2/3	3b		¢ci	0-3																								CD-	4 (ea	rly) ◀	
ND Management																		Near	Dete	ecto	r Ma	nag	eme	ent										,										
ND LAr TPC								TPC	Mod	lule	Integ	Argo Fi	eld S	truct	x2 D High ture	Volt Volt Des Cha Cha Calibu	nstr 10di age ign arge Rea ratic	ator Desi Rea dout ND	truct ign dout Des esign LAr	ture t Des ign i TPC I	Desi, ign Full-s	gn .cale	e de	mon Ar Di	etec	tor	nsta	Illati	on a	ND I	LAr 1	FPC F	Produ	D D N N	OOE 8 OOE T Ailest JonD DD	à Nor ask cone OE Ta	nDOB	Leg	end					
ND LArTPC Cryostat										Pr	ocur	emer	nt an	d Fal	Sy: brica	stem ation	Des	sign																										
ND Muon Spectrometer													Proto	otypi	s ng	Syste	m D	esigr	n	Pr	oduc	tior	n																					
ND Beam Monitoring															Sys	stem	Des	ign								Pro	oduc	tion																
ND PRISM Movement System														Syst	em	Desi	gn			Pr	oduc	tior	n																					

Near Detector LArTPC: Simulation and Analysis

Dedicated ND LArTPC simulation and analysis effort:

B. Russell, R. Soleti, Z.Vallari (LBNF, Caltech)

ArgonCube 2x2 GDML Geometry

P. Koller (Bern), H. Sullivan (UTA)

Intrinsic 3D Reconstruction Tools K. Terao (SLAC)

Near Detector LArTPC ArgonCube

Critical Component of Near Detector System

- Key design features (size, fidelity, modularity) driven by oscillation physics program
- Growing analysis team focus on physics needs and technical design development

Strong international partnership

- DUNE ND Lar ArgonCube consortium

Mature concept

- ArgonCube R&D program
- Detector elements demonstrated
- Advanced design stage, beyond concept

Prototyping program (dedicated talk)

- Successes with 3D pixel readout, novel light readout, resistive field cage, modular TPCs
- ArgonCube 2x2 Demonstrator in the NuMI beam at Fermilab
- Full-scale ND Module Demonstrator

Corresponding progress in design of associated systems:

- Cryostat, Cryogenics, PRISM, Near Site Infrastructure

