DUNE-PRISM

Michael Wilking – Stony Brook University DUNE Near Detector Conceptual Design Review 7 July 2020

Outline

- Physics Motivations for DUNE-PRISM
- Concept Overview
- Analysis Techniques
- Design Requirements

Systematic Uncertainties in v–Ar Scattering

- One of the main limitations in achieving 2-3% systematic uncertainties is our understanding neutrino-nucleus interactions
 - DUNE's predecessors, T2K & NOvA, have only reached ~7-8% uncertainties using simpler, and much better studied, nuclear targets (C/O)
- Neutrino-argon interactions are subject to a variety of poorly understood nuclear effects
 - e.g. Intra-nuclear scattering & nucleon-nucleon correlations
 - Final state composition and kinematics are difficult to model
- The observed neutrino energy depends on the details of the hadronic final state
 - e.g. much of the energy carried by neutrons is lost
- The "feed-down" of the reconstructed $E_{\rm v}$ in each true $E_{\rm v}$ bin is subject to substantial modeling uncertainties

Impact of v–Ar Mismodeling on Oscillation Measurements

- Shouldn't cross section effects cancel in a near/far ratio?
- No, since the near and far spectra are very different (mostly due to oscillations)
 - E_{REC} feed-down has a gradual effect at the ND, but smears oscillation features at the FD
 - v-Ar mismodeling can bias osc. parameter measurements, even with perfect ND data/MC agreement (see next slide)
- To move beyond T2K & NOvA to the 2-3% systematic uncertainty level, qualitatively new, datadriven constraints are needed on E_{TRUE} → E_{REC} feed-down

Measurement Biases due to Poor v–Ar modeling

- Near detectors allow us to correct v-Ar mismodeling
 - However, if we choose the wrong corrections to force agreement with our near detector data, our oscillation parameter measurements can be biased
- Test case: What if 20% of the neutrino energy carried by final state protons were actually carried by neutrons?
 - In response, DUNE physicists might incorrectly choose to modify cross sections (e.g. $d\sigma/dE_{proton}$) to match the on-axis near detector data
- A full near+far detector fit of this test case produces strong biases in measured oscillation parameters
- **Summary**: even with perfect data/MC agreement in an on-axis near detector, DUNE may still get the wrong answer

DUNE Oscillation Parameter Bias After 3 Years (with only on-axis near detector measurements)

DUNE-PRISM Off-Axis Measurements

- Neutrino beams are produced via 2-body decays of charged pions
- As a detector is placed increasingly "off-axis", the energy spectrum narrows, and peaks at lower E_v
- Moving the detector allows us to scan across incident neutrino energy
 - Provides a set of neutrino
 "test beams" to across a range of true energies
- This allows us to directly measure reconstructed E_v as a function of true E_v

LBNF DU

per POT per 1 GeV)

30

DUNE-PRISM Layout

- Both the ND-GAr and ND-LAr detectors move off-axis using powered Hilman "skates" rolling on box beams
 - More details in tomorrow's talk by
 R. Flight
- The detectors can be placed at arbitrary positions along the off-axis direction
- The SAND detector remains onaxis to monitor the beam

Uses of DUNE-PRISM Data

- 1. <u>Identify</u> cross section mis-modeling that can produce biased oscillation parameter measurements
 - By looking off-axis (changing the E_v spectrum), we can identify mis-modeling problems that are caused by incorrect tuning of models to on-axis data
- 2. <u>Overcome</u> cross section mis-modeling problems (2 approaches):
 - a) <u>Standard approach</u>: Develop a cross section model that can describe the near detector data
 - It is now much more difficult to make "incorrect" model adjustments, since these adjustments must now match the data with many energy spectra that peak across the oscillation region
 - b) <u>Data-driven approach</u>: Take linear combinations of off-axis measurements to produce a FD prediction composed of ND data
 - Any unknown cross section effects are directly incorporated into the far detector spectrum prediction

Use 1: Identifying Modeling Issues

- With DUNE-PRISM, the missing proton KE test case can be compared to nominal MC at many different off-axis positions
- The previously "hidden" modeling problems can clearly be seen off-axis
 - ND off-axis spectra span the FD $E_{\rm v}$ spectrum, so modeling can be verified within the $E_{\rm v}$ range relevant for DUNE oscillation physics

Use 2b: (Part 1) Flux Matching

- The flux predictions at each off-axis position can be linearly combined to match any user-defined flux
 - The same combination can then be applied to any observable (e.g. $\mathsf{E}_{\mathsf{rec}})$
- 2 types of fluxes are of particular interest:
 - A Pseudo-monoenergetic flux (e.g. Gaussian)
 - Can be used to measure a reconstructed distribution for a known true energy (similar to electron scattering)
 - e.g. it is now possible to make the first ever measurements of neutral current interactions vs E_{v}
 - A FD oscillated flux

10

- We can now produce oscillated fluxes at the ND!
- Allows for a direct measurement of the oscillated FD E_{rec} distribution at the ND (for any choice of oscillation parameters)

LBNF/Di

Special 280 kA Horn Current Run

- It's difficult to get agreement at high energies using only off-axis fluxes
 - Highest energy flux available is the on-axis flux
- By adding a 1 week special run each year at a slightly lower horn current (293 kA -> 280 kA), we gain additional high-energy information

Special 280 kA Horn Current Run

- It's difficult to get agreement at high energies using only off-axis fluxes
 - Highest energy flux available is the on-axis flux
- By adding a 1 week special run each year at a slightly lower horn current (293 kA -> 280 kA), we gain additional high-energy information
 - We can now match the far detector oscillated spectrum for any choice of oscillation parameters

Linear Combination Analysis Removes Biases

- Let's revisit our E_{proton} mismodeling test case
- By constructing the FD prediction from linear combinations of ND data (solid green), we correctly predict the correct shape of the FD E_{rec} spectrum (black data points)
 - i.e. we no longer have the shift in seen the standard, ND constrained, model extrapolation (red dashed)
 - This holds true across the entire allowed parameter space
- A correction is included for the small residual mismatch in the ND to FD flux matching (solid gray)
- The backgrounds are also shown (solid orange)

Systematic Uncertainties (Flux)

- Having the near and far detectors in the same neutrino beam is critical to minimize systematic uncertainties due to the flux modeling
- The top plot shows a large variation in the hadron production model
 - The FD flux, and the matched ND linear combination flux, both move by nearly the same amount (up to ~5 GeV)
 - The residual difference (bottom plot) gives the actual systematic uncertainty
 - The correction for this residual difference is the only part of the analysis susceptible to signal cross section modeling uncertainties (higher order effect)
- The total flux systematic uncertainty due to all variations is given in the bottom plot
- This analysis is also susceptible to detector uncertainties, and cross section modeling uncertainties on the (relatively small) backgrounds

Example Large Flux Variation

Movement Frequency

- NuMI experienced some intermittent issues affecting E_v spectrum
 - e.g. target degradation, horn direction changes
- There may be issues with combining off-axis data from runs taken in different years

- If flux changes cannot be properly simulated, extra systematics may be required when determining correlations between flux uncertainties at different off-axis positions

Our goal is to take a full suite of off-axis measurements each year (i.e. run)

NuMI Horn Tilt (Bushing Failure)

NuMI Data Runs

LBNF/DU(V

NuMI Target Degradation (3 year period)

Detector Acceptance

- We reject events with hadronic energy in outer ~30 cm
 - ...to guarantee that we've contained all of the energy
- This means that events near the edge of the detector have worse efficiency
 - This is not desirable, since our ability to correct for this effect depends on the same poor modeling we are trying to avoid
- We don't want to repeatedly put the detector in the same off-axis positions each time we sample the off-axis range

Sampling Granularity

- The distance scale for flux variations (especially near-on-axis) and detector variations is ~10 cm
 - LAr FV is likely to exclude interactions in or near the ArgonCube module walls
- To avoid consistently sampling the same off-axis regions with "bad" detector is, we require position control at ±3 cm (goal: ±1 cm)
 - mis level of control will keep the LAr and MPD sufficiently aligned to avoid s to the muon acceptance vs off-axis angle

×10⁻⁹

40

20

 $\Phi_{
m V}$ (cm 2 per POT per 1 GeV)

60 OptimizedEngineeredNov2017Review, v-mode, v

2

3

1 m

 E_v (GeV)

, com

Detector Positioning Requirements

- Our current assumption is 50% on-axis running for flux measurements (e.g. nu-e scattering)
 - Alternating between on-axis and each new off-axis position allows for frequent detector performance verifications (time-dependent effects)
- The LAr fiducial volume is 4 m wide, so the minimum required number of additional detector positions to span the full off-axis range is 8 (for 30.5 m)
- To avoid efficiency differences among off-axis positions, our goal is to access an additional set of ~7 "half-stops" within each beam run
 - (note that the number of substops does not affect the statistics collected in each 50 cm off-axis interval)
- Assuming 56% uptime, this corresponds to ~1 week per position, including substops
 - To achieve < 5% deadtime, we require the detector to move between 2 arbitrary positions (and resuming taking high-quality data) within an 8-hour shift
 - This places requirements on ND-LAr & ND-GAr to limit ramp down & ramp up to 1 hour each
 - System must reach speeds up to 10 cm/min (easily achievable with current design)
- Analysis is ongoing to determine the minimum statistics needed in each off-axis interval, but it appears we will not be limited by statistics at any off-axis position.

Summary

- With only an on-axis near detector, it is possible for DUNE to measure biased oscillation parameters due to the difficulty in properly modeling v—Ar interactions at the GeV scale
- Making measurements over a continuous off-axis range breaks degeneracies in the mapping of E_{true} to E_{rec}, and provides sufficient constraints to detect v–Ar modeling problems
 - This information can be used to produce a far detector prediction with a substantially reduced dependence on cross section modeling
- The system design allows for moving the detectors weekly to collect data over the entire off-axis range
- Design details will be given in tomorrow's talk by R. Flight
 - Requirements are achievable with commercially available products

Backup

Data-driven efficiency

- Use symmetries of neutrino interactions in ArgonCube:
 - Symmetric wrt translations in the LAr volume.
 - Symmetric wrt rotations around beam axis.
- Algorithm:
 - For a given **selected** ND event, rotate and translate 3D **hadronic** energy deposits **and** reconstructed **muon vertex** and **momentum** vectors N times.
 - For the **hadronic** side:
 - Count how many of the trials would have passed the hadronic containment cut.
 - Take the ratio to the total number of trials get the "geometric" efficiency for that event.
 - For the **muon** side:
 - Use a **neural network** trained on particle gun MC to estimate the muon selection efficiency for a given translation/rotation.
 - Combine both to get event-level efficiency.

Hadronic Geometric Efficiency

- The geometric efficiency correction can only correct for the events that have sufficiently high efficiency in the near detector
 - The remaining phase space (largely at high E_v), cannot be directly observed at the near detector
 - · Hadronic showers are too large to ever be contained
- At the first oscillation maximum, ~90% of events can be observed at the ND

Muon efficiency neural network

- Train neural network to predict fate of muon as a function of its position and momentum.
 - Output is the probability for the muon to be sampled in the tracker, be contained in the liquid argon, or not be selected.
- For initial studies use true position and momentum, but plan to use reconstructed quantities in the future.
- Start with simple neural network with 2 hidden layers with 64 nodes each and ReLU activation.

v_e Appearance

- Flux match the ND off-axis v_u spectra to $FD v_e$ spectrum (for a given set of osc. params)
 - Analogous to the v_{μ} disappearance analysis; this is correct if $\sigma(v_e)/\sigma(v_\mu) = 1$
- To measure a correction for $\sigma(v_e)/\sigma(v_u) \neq 1$, flux match **ND off**axis v_{μ} spectra to ND v_{e} spectrum
- Finally, backgrounds can be (largely) measured by on-axis ND v_e sample

 More detailed corrections to exclusive background channels can be made with Gaussian v_{μ} fluxes

 $\sum_{c} e_{c}^{c}$

Jed 1.0

0.0

Ω

LBNF/DUN

5

Near ν_e Flux 16.5 - 33 m

---- Fitted ND ν_{μ}

2

3

 E_{ν} [GeV]

Example (Unoptimized) Run Plan

			ND-LAr			ND-GAr
		All int.	Selected			All int.
Stop	Run duration	$N_{ u_{\mu}CC}$	N_{Sel}	WSB	NC	$N_{ u_{\mu}CC}$
On axis (293 kA) m	14 wks.	21.6M	10.1M	0.2%	1.3%	580,000
On axis (280 kA) m	1 wk.	1.5M	690,000	0.3%	1.3%	40,000
4 m off axis m	12 dys.	2.3M	1.2M	0.3%	1.0%	61,000
8 m off axis m	12 dys.	1.3M	670,000	0.5%	0.9%	35,000
12 m off axis m	12 dys.	650,000	330,000	0.8%	0.7%	17,000
16 m off axis m	12 dys.	370,000	190,000	1.1%	0.7%	10,000
20 m off axis m	12 dys.	230,000	120,000	1.3%	0.7%	6,200
24 m off axis m	12 dys.	150,000	75,000	1.8%	0.7%	4,100
28 m off axis m	12 dys.	110,000	50,000	2.1%	0.8%	2,900
30.5 m off axis m	12 dys.	87,000	39,000	2.3%	0.7%	2,300