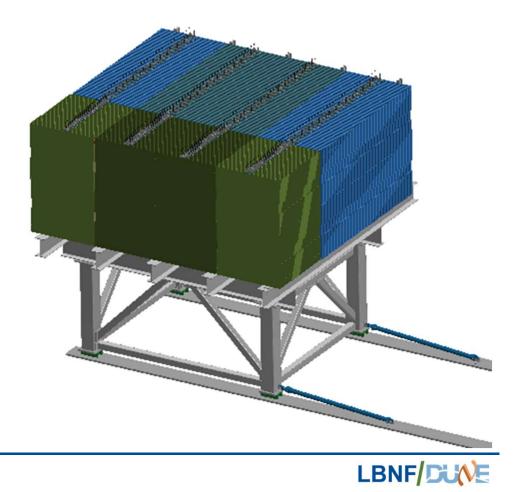
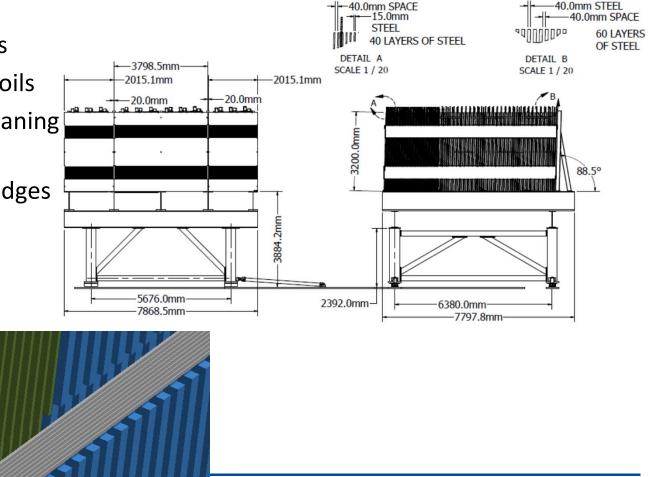
Temporary Muon Spectrometer Design

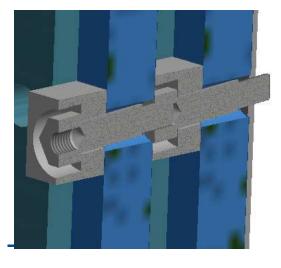
Victor Guarino Near Detector Conceptual Design Review 7-9 July 2020

Who am I

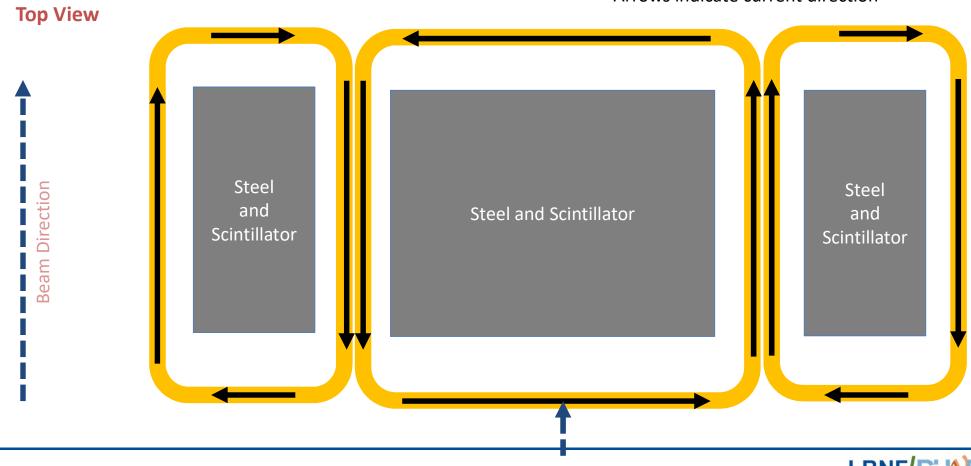

- Manager Engineering Services at ANL
- Licensed Structural Engineer
- 30 years of experience on HEP experiments
 - US Project Engineer for the ATLAS Tilecalorimeter at CERN
 - L3 Manager on MINOS
 - L3 Manager on NOvA
 - High Voltage Engineering Lead on DUNE FD
- Other experience
 - Designed and managed the construction of 12m Davis-Cotton prototype telescope for CTA
 - Designed a Schwarzschild-Couder Telescope for Gamma Ray astronomy at Veritas.
 - Designed and fabricated 8m carbon fiber X-Calibur X-Ray balloon experiment
 - Designed and fabricated cryostat/camera for CMB-S3
 - Designed multiple high precision positioning devices for the ANL APS

- Asked to develop a preliminary design in ~4 months with costing
- Design based on requirements defined by Tom/Tim/Dan
- Design based on experience with MINOS and Mu2e Veto scintillator modules (and the design/fabrication/construction of many other experiments)
- Preliminary design for:
 - Support structure
 - Magnet steel
 - Magnet coil
 - Scintillator modules
 - Assembly in Hall Underground




- 100 layers of alternating steel and scintillator
- Each layer has four modules; each containing 48 MINOS-like scintillator slats, 3.5 cm wide
- The entire stack is surrounded by two belts of coils (shown later) providing a 1.5T vertical field
- It can move in the x-direction (PRISM)

Overview of Muon Spectrometer Design


- 3 columns of steel
 - Easier to handle smaller plates
- Notches cut in steel for magnet coils ٠
- Steel supported at bottom and leaning 1.5deg
- Bearing between plates around edges

LBNF/DUNE

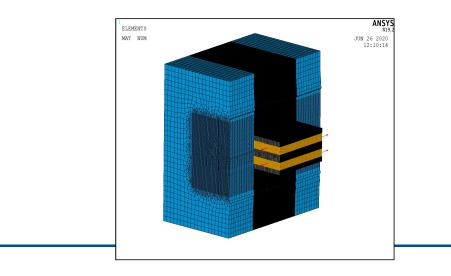
40.0mm STEEL

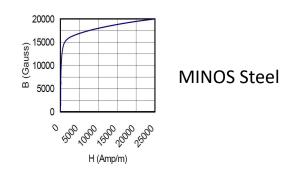
Arrows indicate current direction

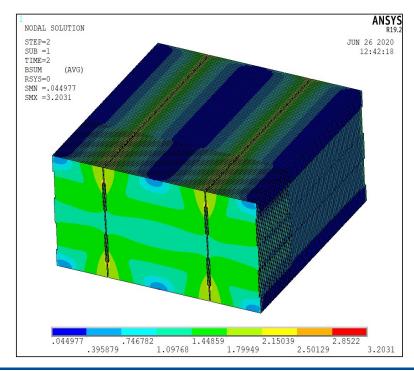
- 100 wraps per coil
- 150 A / 70V per coil 10.5 kW per coil ~~63kW total heat to extract
- Preliminary design based on copper bar with central hole for cooling (10 x 10 with 5 hole)
- Heinzinger PNY Power Supply
- Need to evaluate assembly and location of coils and cooling

LUVATA

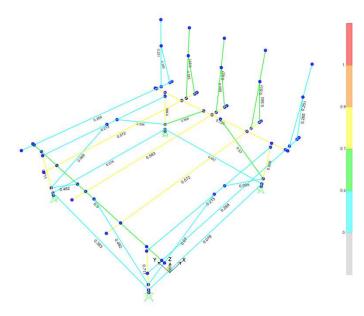
Products ∨ Company ∨ Careers Contact

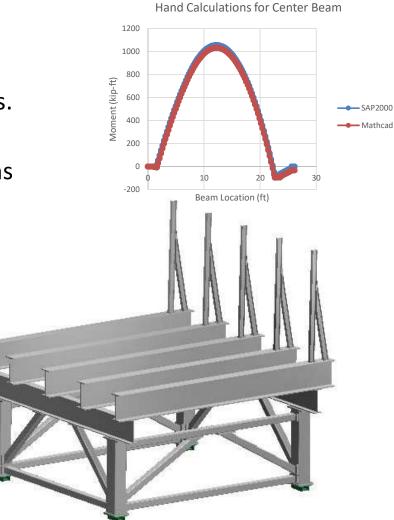



PNY-Serie	es		
Technical descript	ion		
General		Voltage stabilization	
Function Input voltage	thyristor controlled power supply 3x400V ±10% 3p	Setting range (loss >2%) Setting accuracy (monul operation)	approx. 1% to 100% U _m ≤0,02% U _{man}
	other on request	Reproducibility	±0,1% U
Input frequency Input current Ambient temperature	47 63Hz type-dependent 0°C 40°C	Line regulation (at +10% mains voltage change due to load change)	<=0,1% U _{non}
Displays		Load regulation (on load step from 10% to 90%)	$<\pm0,1\%~U_{\rm num}\pm10mV$
Output voltage Output current	3,5-digit digital display 3,5-digit digital display	Response time (on load current change from 10% to 90%)	typ. 20 500ms U deviation (type-dependent)
Voltage control (CV-mode) Current control (CC-mode)	LED LED	Stability (under constant conditions)	≤0,03% U _{nm} over 8h
Output	- 1998 ⁻	Temperature coefficient Ripple	≤0,03% U/K ≤1% pp ±100mV U
Discharge time (with unloaded output)	<60s (type-dependent)	Current stabilization	
Output voltage	isolated, floating w.r. to	Setting range	approx. 1% to 100% I_
	ground (≤1000V DC) electronic common	Setting accuracy (manual operation)	≤0,02% I _{ann}
	connected to output "+"	Reproducibility	±0,1% I
Output terminals	sockets, passed through to the output current	Line regulation (at ±10% mains voltage change due to load change)	<±0,1% I _{num}
Analog interface for rem	>400A chopper busbars a	Load regulation (on output voltage change of around #10% due to load change)	<#0,1% I _{sum}
(standard for units <100		Response time	typ. 20_500ms I
Voltage adjustment	010V 010V	(on output voltage change of around #10% due to load change)	deviation (type-dependent)
Current adjustment Voltage monitor	010V 010V	Stability	≤0,03% I over 8h
Current monitor	010V	(under constant conditions)	SU,US = 1 AND OVER SH
Output on/off	contact NO = on	Temperature coefficient	≤0,03% I/K
Connector	15-pin Sub-D-socket	Ripple	≤1% pp ±10mA I
Polarity	related to positive output (potential free as option)		
		Scope of supply	

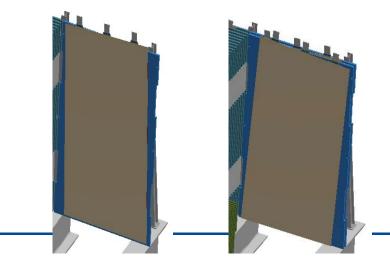


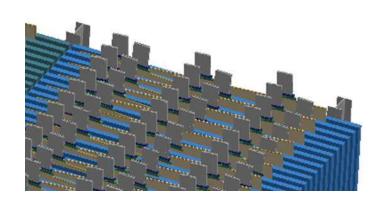
Numerical Solutions of Maxwell's Equations with ANSYS

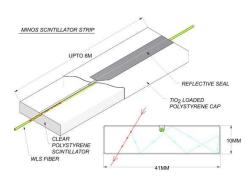

- We have a 15000 Ampere-turn model
 - Field quality is good
 - Goal is to slightly over-saturate.
 - Saturation is at $^{\sim}$ 1.5 T
- 100 wraps per coil 150 A/70V
- Further work is needed to optimize

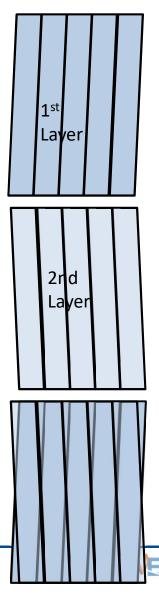


- I-beam structure to support 544 tons of steel
- Empirical and FEA calculations performed to size beams. Examined static and seismic loading
- Size of beams driven by requirement to keep deflections less than ¼"

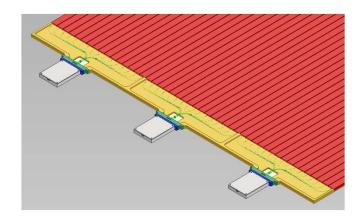


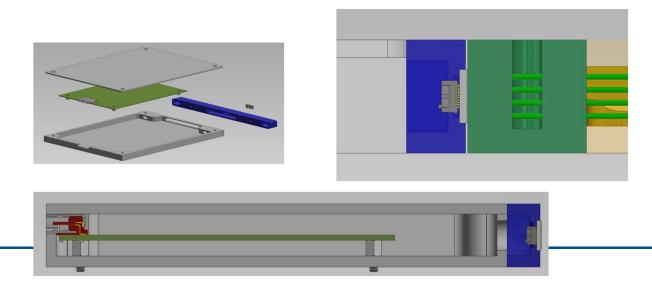


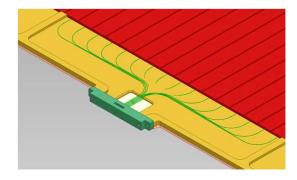

Moment Diagram Comparing SAP2000 and


Scintillator Module Design

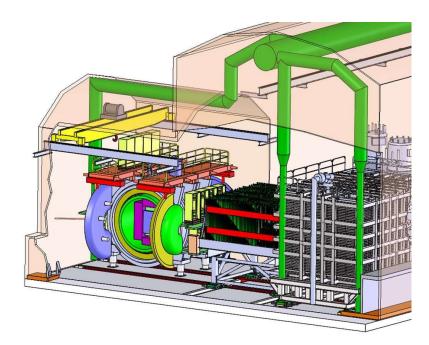
- Design is very MINOS-like
- Spectrometer has 100 planes
- Each plane has four modules (192 channels)
- Each module is a self-contained box containing
 - 48 scintillator bars 3.5 cm wide with wavelength-shifting fiber
 - SiPM, ADC and associated electronics
- Panels (which are rectangular) are tilted ±3° in alternating layers
- 30mm gaps between modules in different steel columns







Scintillator Modules


- 48 scintillator per module 3 groups of 16 fibers per SIPM
- Scintillator glued into a sandwich between aluminum coversfiber manifold at one end and 3deg wedge at bottom
- Each module has three 16-channel Hamamatsu SiPMs
- Each module has six 8-channel Texas Instruments AFE-5807 analog front ends/12-bit ADCs
- Digital signals are combined and reformatted off-detector
 - And then on to the DAQ

- Steel support structure will be assembled underground
- Steel plates are then stacked and secured
- Modules are slid vertically between steel plates
- 15ton overhead crane

- A preliminary design has been developed based on given design requirements
- Design is based on initial calculations of structure and magnet
- Module design based MINOS and Mu2e veto
- Conceptual design is the basis for cost estimate

