Near Site Cryogenics Overview

David Montanari (on behalf of Near Site Cryogenics Team) DUNE Conceptual Design Review: Near Detector 7-9 July 2020

DM: Slides have been edited on Jul 8, 2020 (5, 19, 20, 22).

Outline

- Scope/Overview
- Organization
- Layout.
- LAr Cryogenics.
- LHe Cryogenics.
- Process Controls.
- Next Items
- Schedule.
- Summary.

Cryogenics Infrastructure Scope

- **Cryogenics Infrastructure** planned to support LAr Detector and SAND with capability to support future additional detector with SC magnet (MPD).
- LAr Cryogenic Systems includes design, procurement of materials, installation and testing of cryogenic systems for LAr detector (LAr/LN2).

- Includes Cryogen Receiving, transport underground, liquefaction and purification sub-systems, associated instrumentation and monitoring equipment.

• LHe Cryogenics includes design, procurement of materials, installation and testing of cryogenic systems for magnets (SAND + capability to support future SC magnet).

- Includes He transport underground, liquefaction cryoplant, distribution, associated instrumentation and monitoring equipment.

- **Process Controls** includes design, procurement of materials, installation and testing of process controls infrastructure supporting LAr/LHe cryogenics.
 - Includes readout modules, PLC architecture, HMI/SCADA.

Near Site Cryogenics Infrastructure Organization

- Project Manager:
 - David Montanari (LBNF).
- Lead Cryogenics Systems Engineer:
 - Mark Adamowski (LBNF).
- Engineers:
 - Joaquim Creus (Fermilab/APS-TD) \rightarrow NS LAr cryogenics.
 - Li Wang (LBL) \rightarrow NS LHe Cryogenics.
 - Trevor Nichols (Fermilab/ND) \rightarrow NS Process Controls.
 - Ian Young (Fermilab/PPD) \rightarrow NS Process Controls.
 - Erik Voirin (Fermilab/PPD) \rightarrow CFD modeling (as needed).
- Design and Drafting support:
 - Mike Delaney (LBNF).
 - Justin Tillman (Fermilab/ND, until early Jun-2020).
 - Andrew Lawrence (LBL).

- Support from Project:
 - Matthaeus Leitner (LBL) \rightarrow Installation & Integration
 - Jack Fowler (Duke University) \rightarrow Systems Engineering.

LBNF/DUN

- Mike Andrews (LBNF/DUNE) → ES&H.
- Kevin Fahey (LBNF/DUNE) \rightarrow QA.

Near Detector (ND): Project Scope And Baseline Design (Day-one configuration)

LBNF/DUNE

High level Requirements (more later)

• SAND

- Thermosiphon cooling requirements:
 - 55W at 4K.
 - 530W at 70K shield.
- Cooldown with mixing chamber in the magnet top insert.
- Total LHe volume of 200 liters.
- Cold mass 10 Tons.

LAr Detector

- Electron lifetime of 3 ms.
- System volume 318 Tons of LAr.
- Membrane cryostat technology.
- Detector moves 30 meters once a month at 1 cm/minute.
- Liquid distribution to 7-off rows with five ArgonCube modules each.
- Centralized LAr purification system.

- https://edms.cern.ch/document/2387229
- https://edms.cern.ch/document/2391482

Near Site complex

- LAr Cryogenics supporting LAr Detector.
- LHe Cryogenics supporting SAND. Upgradable to support future SC magnet.

Cryo surface facilities not shown.

LAr Cryogenics

Relevant Requirements (partial list)

Requirements from DOORS requirements management:

- Electron lifetime of 3 ms required for experiment.
- Each row of 5 ArgonCUBE detector elements receives its own LAr stream from a common LAr distribution/purification. There are 7-off rows.
- The estimated heat loads are:
 - From the cryostat 3 kW;
 - From the detector electronics within the cryostat 12 kW;
 - From the LAr pumps 0.5 kW (assuming 1 pump in operation);
 - From the piping and purification vessels 1.0 kW.
- Vessel internal size of $L \times W \times H = 9.0 \text{ m} \times 6.0 \text{ m} \times 4.5 \text{ m} (318 \text{ ton LAr}).$
- Detector moves 30 meters once a month at 1 cm/minute.

Interfaces

- NS Conventional Facilities ICD
 - Industrial utilities (LV, IA).
 - HVAC (+ ODH mitigation).
 - External layout.
 - Cavern layout.
- NS Integration ICD
 - Energy chain.
 - Moving platform.
 - Cryostat integration.
 - Internal cryogenics.
 - ArgonCube modules.
- NS He cryogenics ICD
- NS Cryo Controls (CF ICD + Spec).

LINK: <u>EDMS 2339685</u>

Modes of Operation

- 1. **Piston Purge:** Vessel purged of Air contaminants with GAr flowing from a gas manifold at membrane vessel base. Expected to involve 10 volume changes and last two days.
- 1. **1.1 Water desorption**: Since ArgonCube modules have a lot of G10 surface, warm dry gas will be flown to help dry G10 surface. Process parameters and details being worked out at Bern, Switzerland. Cold trap might be used as well.
- 2. Cooldown: Vessel and detector are cooled down with LAr sprayers fed from a Tube-shell 24kW condenser cooled by LN2. Location of sprayers being discussed.
- **3. Cryostat Fill**: Liquid argon deliveries are tested for quality. Argon flows on-pass to purification system, is treated in phase separator and enters the cryostat in a liquid distribution manifold.
- 4. **Purification Mode**: The detector is expected to work in this mode for years. The circulation pump valve box suction receives argon from a side penetration in cryostat. Discharge flows to purification valve box, then phase separator and back in the cryostat distributed in the 7-off ArgonCube modules. Condenser collects cryostat boil-off and phase separator flashing diverted into circulation pump suction.
- 5. Activation/Regeneration: Purification system is based on Copper Oxide and Molecular Sieve. Copper Oxide is activated and regenerated by flowing a non-flammable mix of Argon/Hydrogen heated to 500 K. Molecular Sieve bed regenerated with a flow of gas at 500 K.
- 6. Empty: ND-LAr is 215-ft deep underground. In order to empty it, heaters with a total power of 45 kW will be placed in different parts of the vessel to boil the argon off in two weeks.

LBNF

Design

- P&IDs and functions very similar to SBN-ND.
- Supply of liquid argon to 7-off ArgonCube strings.
 Agreed on simplified Argon distribution.
- Details of Internal Cryogenics to be worked out.
- Supply of LN2 to He services to surface and cavern.
- Integrated design and VIE with AutoCAD Plant.
- Use of PBS to define equipment naming in documentation, P&ID, 3D and interfaces.
- Possibility to reuse existing equipment from Fermilab and CERN.

Layout

LINK: <u>EDMS 2339713</u>

LHe Cryogenics

SAND Cooling Requirements (1/2)

Coil assembly	Parameter
Central Field (T)	0.6
Layers	3 2
Turns/layer	368
Ampere-turns	; 2.14 MA-T
Operating Current (A)	2902
Design Current (A)	3000
Inductance at full field (H)	3.4
Stored energy (MJ)	14.32
Discharge voltage (V)	250
Peak Quench Temperature (K)	80
Conductor	10 mm x 5 mm AI stabilized NbTi Rutherford cable, Rutherford cable co-extruded with high purity aluminium, wrapped with two half lapped layers of 0.125 mm glass tape.
Coil winding method	I internally wound coil; a two layer coil wound on flat with a full vacuum impregnated insulation system
Coil support bobbin	1 5083 aluminum cylinder
Coil shell inner diameter (m)	5.19
Coil Cold mass (ton)	10 (~8.5)
Radiation shield	two 5 mm thick solid aluminum cylinders with cooling pipes attached to the outside of each
Vacuum Case	
Vacuum jacket	12 mm thick externally rolled and welded machined cylinder with external strengthening ribs
	12 mm thick internal rolled and welded machined cylinder with internal strengthening ribs - calorimeter support
	Two 40 mm thick end plates with double o-ring machined grooves
Vacuum case length (m)	4.32
Vacuum case inner diameter (m)	4.86
Vacuum case outer diameter (m)	5.76
Vacuum case mass (ton)	26
Iron return yoke mass (ton)	475
Service Turret	supply and control of LHe including JT valve; supply and control of 70 K helium for radiation shields; gas cooled 3,000 A current leads Instrumentation connections to the coil and radiation screens; LHe reservoir: 150 liter

https://edms.cern.ch/document/2387229/1

SAND Cooling Requirements (2/2)

Coil cooling scheme	indirectly cooled through a LHe thermosiphon cycle
He supply from cold box	3 bara/ 5K with expansion from 3 to 1.2 bara/4.4K inside the magnet
Thermal shield cooling method	70K forced cold GHe flow
Current leads	a pair of GHe cooled 3kA leads, cooled by helium vaporized from LHe reservoir in the Turret, 0.4g/s
4 K radiation and conduction (W)	55
Current leads' cooling flow (g/s)	0.4
70 K radiation and conduction (W)	530
Operating temperature (K)	4.42
Operating pressure (bara)	1.2
LHe in magnet w/Turret (liter)	~200
LHe reservoir in Service Turret (liter)	~150
300-70K cool down scheme	300K and 70K GHe mixing forced flow, 4~5 bara
70-4K magnet cool down scheme	3 bara/5K GHe forced flow
Coil cold mass (ton)	~10

Interfaces

- LAr system:
 - LN2 phase separator.
 - LN2/GN2 transfer lines.
- SAND magnet:
 - Service turret.
- Integration & Installation:
 - Energy Chain.
 - Platform.
- Near Site Cryo Controls.

LBNF/DUNE

Modes of Operation

Based on old SAND magnet cooling system:

Cool down processes.

✓ 300-77 K cool down: SAND magnet and thermal shields.

✓ 77-4 K cool down: SAND magnet and current leads w/ thermal shields at 70-80K.

LBNF/

- Normal operation.
- Quench process.
- Cool down after quench.
- Warm-up.
- Failure modes (vacuum loss, power outage, etc.).

Design Schemes

- Preliminary design supports SAND magnet, with upgrade capabilities to also support a future magnet.
- Two Schemes are considered (both under design) and will be determined based on available installation space and bottoms-up cost estimates:
 - Scheme I: One smaller He refrigerator with LN2 precool (~200 W at 4.5 K). Will require another smaller refrigerator and another LN2 precool for future magnet.
 - Scheme II: One larger He refrigerator without LN2 precool to support SAND magnet (4-500
 W at 4.5 K). Will require LN2 precool for future magnet.

LBNF/

• Scheme I being pursued. However recent design developments (increased heat load) may lead to reconsider Scheme II.

Process Flow Diagram (Scheme I)

- One 200 W / 4.5 K order of magnitude He Refrigerator system with LN2 precooled cold box is under design to only serve the SAND magnet.
- LN2 phase separator shared with LAr system.
- Includes interfaces to be able to connect to future magnet cooling system.
- Another 200W/4.5K order of magnitude He Refrigerator system with LN2 precooled cold box will be added to serve a future magnet later.

Preliminary P&ID for SAND magnet cooling system

DM: This slide has been edited.

Layout Plan

Preliminary design of VJ cryo-transfer lines under development to optimize routing and reduce their length (heat load).

to SAND magnet

FTL on Energy Chain

to future movable magnet

MCTL for future

movable magnet

LN2 separator

Future Magnet CB+DVB

ND CB+DVB

MCTL for SAND

Process Controls

Process Controls

- Main Cryo controls system:
 - Designed for autonomous operations. Under normal conditions does not require human operators.
 - With redundancy to reduce system downtime.
 - Exhibit control over all cryo equipment at Near Site (either directly or indirectly).
- Safety Integrated System:
 - Provides ODH protection.
 - Provides cryostat overpressure protection.
 - Decoupled from main to allow for main system updates without interfering with safety safety system.
- Developed:
 - System architecture.
 - PLC Controls strategy.
 - HMI/SCADA Strategy.
 - I/O counts and I/O maps.
 - Preliminary Drawings (Main and safety PLC and control cabinets mechanical and electrical drawings).

LBNF/

Sample Cabinet Electrical Diagram PLC – Sample drawing

ES&H

- ODH 1 + escape pack with OA 7500 CFM.
- Shared ODH mitigation with HVAC.
- Escape corridor at the cavern level.
- LBNF cryo safety panel engaged with concept.

Design Status

- Design work started in Dec-2019 and proceeding with high priority.
- Tremendous progress to date:
 - Preliminary Design (pipe and equipment sizing, process parameters, etc.).
 - 3D layouts.
 - P&IDs.
 - Main cryo controls and safety controls strategy and cabinet drawings.
 - ODH strategy socialized with LBNF Cryo safety review panel.
- Preliminary Design Reviews (PDRs) on Jul 1-2, 2020.
- Process Controls WBS fully implemented in P6. Ian Young is Manager and CAM.
- LAr Cryogenics WBS fully implemented in P6. Joaquim Creus is Manager and CAM.
- LHe Cryogenics WBS being developed. Conceptual-level estimates being updated with detailed bottoms-up estimates. Values expected to be inline with current estimates. Li Wang is Manager. Will become CAM once bottoms-up completed.

LBNF/

Next Steps

- LAr Cryogenics:
 - Finalize LAr Cryogenics Detector requirements.
 - Finalize Interfaces between cryogenics and LAr Detector.
 - Possibility to reuse valve boxes from Fermilab/SBN (??) and CERN/ProtoDUNEs (\checkmark).
- LHe Cryogenics:
 - Confirm SAND Detector requirements.
 - Finalize Interfaces between cryogenics and SAND.
 - Obtain design and manufacturing documentation for SAND magnet and its operation at LNF.

LBNF/DU

- Process Controls:
 - Update design and plan as LAr Cryogenics and LHe Cryogenics advance.
 - Complete drawings.
- ODH:
 - Complete definition of requirements for NSCF.

NS Cryo Summary Schedule

Catagony	C	CY 202	0		CY	2021	L		CY 20)22			CY 2	023			CY 2	2024			CY 2	2025			СҮ	2026			CY	2027			СҮ	2028			CY	2029)
Category	Q2	Q3	Q4	Q1	Q2	Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	1 Q2	Q3	Q4	Q1	Q2	Q3	3 Q4
CD Milestone							CD	2/3b			CD-	3																											
																																				(D-4	(ear	'ly) 🔷
NS Cryogenics										LA	r Des	ign																			Γ			r	Lege	end			
				1						Pro	ocess	Con	ntrols	Desi	ign																								
															Pr	ocess	s Con	trols	Proc	urem	nent											DOE	Task						
			L	.He E	Ingi	nee	ring							l	LAr P	rocu	reme	nt														Mile	estone						
					U		0				Pro	cure	ment	& In	ntegr	ation	of L	He Sy	/sten	n 📃																			
											Proc	ess C	Contro	ols In	nstall	atior	n & Co	omm	issio	ning																			
																				LAr I	Insta	llatio	on &	Com	miss	ionin	g												
NS Milestone																									AUI	P ND	Hall	\diamond											

LBNF/DUNE

Summary

- Management and Engineering structure in place and functioning.
- Highly qualified and motivated team.
- Design of all items proceeding at fast pace and with high priority.
- Working with Integration and Near Detector to address requirements and interfaces.

Thanks

Backup

Reuse valve boxes from DUNE related experiments

As presented in Value Engineering request VE-3 Cryo, the following value boxes from SBN or ProtoDUNE are proposed to be reused:

- **GAr purification vessel:** The vessel purification capacity is oversized for ProtoDUNE, fully capable.
- **LAr condenser**: The tube shell 24kW condenser design is capable to handle the cooldown and normal operation loads. Also the nitrogen vessel works well as a secondary phase separator.
- LAr circulation valve box: The valve box has all the functions enabled. If the valve box with B&N 1.63 kg/s was donated, they would have to be replaced by smaller capacity specified to fit in the current pump casing.

Valve boxes that can't be reused

- LAr purification vessel: The vessel is oversized for 1.63 kg/s and almost does not fit in the ND-LAr platform.
- Argon Phase Separator: Additional LAr outlets required for ArgonCube.
- Nitrogen Phase Separator: Larger vessel and vent valve required, multiple outlets

LAr Cryogenics Schedule

LINK: <u>EDMS 2339685</u>

	202	20	202	21	20	22	20	023	20	24	20	25	20	26	20	27
Preliminary Design																
Final Design																
Procurement																
Manufacturing																
Installation																
Commissioning																

Previous LAr TPC experiences with similar systems

The following experiences have helped establish the LAr purification and membrane cryostat technologies, operating procedures, best practices and lessons learned that try to be implemented in this system:

LBNF/

- **FNAL LAPD** -> LAr purification
- FNAL 35-Ton Prototype -> LAr purification, membrane cryostat
- **FNAL MicroBooNE** -> LAr purification
- CERN WA105-182 -> LAr purification, membrane cryostat
- CERN ProtoDUNE Single Phase -> LAr purification, membrane cryostat
- CERN ProtoDUNE Dual Phase -> LAr purification, membrane cryostat
- **SBN FD** -> LAr purification
- SBN ND (under construction) -> LAr purification, membrane cryostat

ES&H and Quality Assurance/Quality Control (QA/QC)

- ES&H:
 - Team is involved with LBNF Cryo Safety panel for ODH considerations.
- QA/QC:
 - Following LBNF/DUNE QA plan.
 - LBNF QA Manager will assist in the development of QA Plans, as needed, and review Manufacturer's QC Plans.
 - Equipment manufacturers will follow their facility's QA/QC Program.
 - Subcontractors will be responsible for QC of installation.
 - Cryogenic team will perform oversight of fabrication and installation.
 - Fabrication and Installation QA/QC documentation will be maintained.

LAr Cryogenics Doc list

Document	Item	Cat.	ID	Rev	Title	Date	Class	Author	Status
EDMS 2385443	000	DOC		Rev 1	DOC List	5/29/2020	PM	J Creus	APPROVED
EDMS 2385428	001	DOC		Rev 1	PDR Presentation - 15 min	6/16/2020	PM	J Creus	APPROVED
EDMS 2370356	002	DOC		Rev 1	Basis of Estimates	5/12/2020	PM	J Creus	APPROVED
EDMS 2381764	003	DOC		Rev 1	Risk register	6/4/2020	PM	J Creus	APPROVED
DOCDB 19258	004	DOC		Rev 1	Value Engineering Request CRYO-3	6/9/2020	PM	J Creus	APPROVED
EDMS 2339749	005	DOC		Rev 1	ICD: LA cryo - CF	3/3/2020	ICD	J Creus	APPROVED
EDMS 2385478	006	DOC		Rev 1	ICD: LAr cryo - ND I&I: Energy Chain, Cryostat.	6/12/2020	ICD	J Creus	APPROVED
EDMS 2385477	007	DOC		Rev 1	ICD: LAr cryo - He for shared Nitrogen supply	6/4/2020	ICD	J Creus	APPROVED
EDMS 2339713	008	DRW	F10135040	Rev 1	3D model	4/28/2020	ENG	J Tillman	APPROVED
EDMS 2370889	009	DRW	F10135040	Rev 1	2D drawings	5/12/2020	ENG	J Tillman	APPROVED
EDMS 2370342	010	DRW		Rev 1	P&ID drawing	6/2/2020	ENG	M Delaney	APPROVED
EDMS 2380142	011	DOC		Rev 1	PBS: Product Breakdown Structure	5/29/2020	ENG	J Creus	APPROVED
EDMS 2376034	012	DOC		Rev 1	Preliminary ODH analysis	10/3/2019	ENG	M Adamowski	APPROVED
EDMS 2380152	013	DOC		Rev 1	Purification system sizing	4/9/2020	ENG	J Creus	APPROVED
EDMS 2385846	014	DOC		Rev 1	VI&E List	6/17/2020	ENG	J Creus	APPROVED
EDMS 2390106	015	DOC		Rev 1	ND-LAr detector requirements documentation	6/25/2020	ENG	J Creus	APPROVED
EDMS 2390126	016	DOC		Rev 1	ND-LAr process parameters for RFI application notes	5/4/2020	ENG	J Creus	APPROVED

Commercial Refrigerator/Liquefier

Li	nde-He Refrig	erator/Liquefier:	Dynamic gas-be	aring turbine te	echnology
Series No.	Liquefaction r	ate at 4.5K (L/hr)	Refrigeration	at 4.5K (W)	Power Rating (kW)
	w/LN precooling	w/o LN precooling	w/LN precooling	w/o LN precooling	
L70	40-70	20-35			45.75
LR70			130-190	100-145	45~75
L140	90-140	45-70			00 400
LR140			255-400	210-290	90~132
L280	200-290	100-145			160-250
LR280			560-900	445-640	100~200

		Air Liquide-He	e Liquefier: Static	gas-bearing to	urbine technology	
	Liquefaction r	rate at 4.5K (L/hr)	Refrigeration	at 4.5K (W)	ELECTRIC POWER (kW)	MAXIMUM EFFICIENCY (kW/(L/hr))
	w/LN precooling	w/o LN precooling	w/LN precooling	w/o LN precooling		
HELIAL SL	30 to 50	15 to 25			45 to 55	1.0
HELIAL SF			100-3	300	45 to 132	
HELIAL ML	75 to 150	35 to 70			75 to 132	0.9
HELIAL MF			300-	600	132 to 210	
HELIAL LL	215 to 330	110 to 145			160 to 250	0.75
HELIAL LF			600-1	000	210 to 315	

https://edms.cern.ch/document/2387227/1

Estimates of Heat Loads: SAND cooling system

Estimates of Heat loads at 4 K: SA	ND Magnet co	oling system		
	q_4K (W/m)	L (m)	Q_4K (W)	
Single rigid cryo-transfer lines	0.5	5	2.5	5K He supply, DN15
between CB & DVB	0.50	5	2.5	4K GHe return, DN25
Multi-channel Rigid cryo-transfer lines between DVB & SAND	0.5	55	27.5	5K He supply, 4K GHe return
SAND DVB			7.5	estimated
			40	
Heat load w/50% contingency			60	
SAND cryostat & turret			55	from KLOE magnet
			115	
3KA Current leads' cooling flow		one pair	0.4 g/s	
4K heat load w/contingency			147	

Assuming:

Q_SAND include contingency, only add 50% contingency to Q_lines and Q_DVBs.

Estimates of Heat loads at 70 K:	SAND Magnet o	ooling syste	m	
	q_70K (W/m)	L (m)	Q_70K (W)	
Single rigid cryo-transfer lines	0.5	5	2.5	70K He supply, DN15
between CB & DVB	0.5	5	2.5	80K GHe return, DN25
Multi-channel Rigid cryo-transfer lines between DVB & SAND	2.0	55	110	70k He supply, 80K He return
SAND DVB			12.5	estimated
			127.5	
Heat load w/50% contingency			191.25	
SAND cryostat & turret			530	from KLOE magnet, 4~5 bara, 70-80K, 10.2 g/s Ghe
70K heat load			721.25	4~5 bara, 70-80K, 13.87 g/s Ghe
70K Equivalent to 4K heat load			52	Q_70K/14=Q_4K
Total equivalent 4K heat load w/50% contingency			199	

Cooling capacity: at least 200W at 4.4K w/ 70K Ghe supply

39

Main Components

Surface:

- He recycle compressor + ORS + GMP + He Purifier
- GHe storage/buffer tanks
- Warm piping/valve system
- LN2 tank

Shaft:

- Warm Ghe transfer lines (HP/LP)
- LN2 supply cryo-lines
- GN2 vent lines

Cavern:

- He Refrigerator cold box & its control system
- Distribution valve box
- Vacuum-jacketed cryogen transfer lines
- LN2 phase separator

LBNF/DUNE

https://edms.cern.ch/document/2390133/1

GHe storage/buffer tanks

Position	Product Breakdown	Description	Length	Width	Height	Mass
roonton	Structure name	Decemption	in	in	in	lbs
70	HEST-VES-HE-0063	Storage Vessel 15m3, vertical, 1.6MPa	80	80	218	10,000
80	HEST-VES-HE-0064	Storage Vessel 30m3, vertical, 1.6MPa	80	80	433	20000

Process Parameters & System Sizing (1/2)

		SAND Cooli	ng System		
	Work point	P (bara)	Т (К)	Mass flow rate (g/s)	Inner Din - VJ Cryo-lines
	1a		4.94		
	2a		5		
	За	3.0, negligible pressure drop	5.06		DN15 (15~18mm)
3bara/5K He suspply	4a (before JT valve)		5.38	5.038	
	5a (after JT valve)	1.2	4.42, x=0.363		
	6a		4.42, x=1		
4K He return	7a	1.2 negligible pressure drop	4.78	4 638	DN25 (25 - 30 mm)
	8a	r.z, negligible pressure drop	4.91	4.000	
	9a		4.98		
	10a		68.8		
70K Ghe supply	11a	5.0 pealigible pressure drop	68.85	10.2	$DN15 (15 \sim 18 mm)$
ron one suppry	12a		68.96	10.2	
	13a		70.00		
	14a		80.00		
80K Ghe return	15a	1.2~1.5, neligible pressure	81.04	10.2	DN25 (25~30mm)
	16a	drop	81.16	10.2	
	17a		81.21		

Process Parameters & System Sizing (2/2): T-s Diagram

- T at P=3bara before JT valve will be in the range of 4.42~5.876K. If T is higher than 5.876K, there will be no liquid helium generated after JT throttle.
- For SAND magnet cooling, the mass flow rate supplied from cold box at 3 bara will be > 5.0 g/s and its temperature lower than 5 K.
- In order to lower down the temperature before JT valve, heat loads resulting from VJ cryo-transfer lines need to be reduced as much as possible, or a LHe subcooler may be adopted.

SAND magnet cooling: T-s diagram

Specifications of Utilities

Liquid Nitrogen					
Condition:					
Supply pressure			barg	> 2 (3 max)
Purity			mol %	>	99.5
State			-	saturat	ted liquid
Instrument Air					
Condition:					
Supply pressure		barg		\ge 6 and	< 10
Dew point		°C		≤ - 20)
Oil content		mg/m	3	< 1	
Helium Gas					
Quality:					
He purity	for purging	vol% H	le	> 99.995	(4.5)
He purity (at storage tank)	for filling and performance test	vol% H	le	> 99.999* *) or feeding 99 make-up available o	(5.0*)).995 via the purifier ptionally

Cooling water temperatures and pressures (Kaeser compressors) / Kühlwassertemperaturen- und Drücke (Kaeserkompressoren)

	Unit	Limits
Inlet pressure / Druck am Eintritt	[barg]	3 to 10
Pressure drop / Druckabfall	[bar]	1 (standard design / Standardauslegung)
Inlet temperature / Eintrittstemperatur	[°C]	5 to 40
Temperature rise / Temperaturanstieg	[°C]	15 (standard design / Standardauslegung)

Temperatures and pressures for turbine cooling water *I Temperaturen und Drücke für Turbinenkühlwasser*

	Unit	Limits
Inlet pressure / Vordruck	[barg]	3 to 10
Pressure drop / Druckabfall	[bar]	≤ 1
Inlet temperature / Eintrittstemperatur	[°C]	20 to 30
Temperature rise / Temperaturanstieg	[°C]	≤ 1 0

* Data from Linde Kryogenik AG.

LHe Cryogenics Doc list

DUNE Near Site: LHe Cryogenics for Magnets		lagnets					
Folder	EDMS ID	Title	File Name	Upload Date	Author	Note	
		DUNE ND LHe Cryogenics Preliminary P&ID	DUNE_ND_LHe_Cryoplant_Preliminary_PID_LW_06182020.dwg	2020-6-21	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_PID_Only_SAND.pdf	2020-6-25	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_PID_Scheme_I.pdf	2020-6-25	L. Wang		
P&ID for LHe Cryogenics	<u>2387228 (v.1)</u>		DUNE ND LHe Cryoplant Preliminary PID Scheme II.pdf	2020-6-25	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_PID_Only_SAND_Update.pdf	2020-6-28	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_PID_Scheme_I_Update.pdf	2020-6-28	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_PID_Scheme_II_Update.pdf	2020-6-28	L. Wang		
		LHe cryogenics Preliminary layout plans in Cavern	DUNE ND LHe Cryoplant Preliminary Layout MPD magnet cooling.pdf	2020-6-25	L. Wang		
Lavout Plans	2200122 (y 1)		DUNE_ND_LHe_Cryoplant_Preliminary_Layout_SAND_magnet_cooling.pdf	2020-6-25	L. Wang		
Layout Plans	2390133 (0.1)		DUNE_ND_LHe_Cryoplant_Preliminary_Layout_SAND_magnet_cooling_Update.pdf	2020-6-28	L. Wang		
			DUNE_ND_LHe_Cryoplant_Preliminary_Layout_MPD_magnet_cooling_Update.pdf	2020-6-28	L. Wang		
Cost Estimatos	<u>2387232 (v.1)</u>	BOE of DUNE ND LHe	LBNF_NearSite_LHeCryogenics_CostEstimate_LW_20200621update.pdf	2020-6-22	L. Wang		
Cost Estimates	<u>2387233</u>	Cryogenics	LBNF_NearSite_LHeCryogenics_CostEstimate_LW_20200621update.xlsx	2020-6-25	L. Wang		
			DUNE_ND_LHe_Cryogenics_Preliminary_Design_LW_20200618.xlsx	2020-6-25	L. Wang		
	2207227 (+ 4)		DUNE_ND_LHe_Cryogenics_Preliminary_Design_LW_20200627update.xls	2020-6-28	L. Wang		
			DUNE_ND_LHe_Cryoplant_Calculation_Model.pdf	2020-6-25	L. Wang		
	<u>238/22/ (V.1)</u>		DUNE_ND_LHe_Cryoplant_Calculation_Model_Update.pdf	2020-6-28	L. Wang		
Design Documents			DUNE_ND_LHe_Cryogenics-PDR-July2020_V1.pptx	2020-6-25	L. Wang		
		DUNE ND LHe Cryogenics	DUNE_ND_LHe_Cryogenics-PDR-July2020_V2.pptx	2020-6-28	L. Wang		
		Design	kloe-Cryo-PID.pdf	2020-6-21	L. Wang		
	<u>2387229</u>		The_DAONE_Cryogenic_System.pdf	2020-6-21	L. Wang	Publication or	
			3DST-SAND_Assy_2020-03-04.PDF	2020-6-21	L. Wang	Engineering reports	
			00614583.pdf	2020-6-21	L. Wang	g magnet & its	
			P00022550 The KLOE Detector Techinical Proposal 1993.pdf	2020-6-28	L. Wang	cooling	
			Status_of_DAONE_and_KLOE_1999.pdf	2020-6-28	L. Wang		

Process Flow Diagram (2/2): Design Scheme II

- One 400~500 W / 4.5K He Refrigerator system without LN2 precool is used to serve the SAND magnet.
- No LN2 is needed for SAND cooling system.
- Interfaces upgradable to support future magnet cooling system.
- The 400~500W/4.5K He Refrigerator system with LN2 precool will be used to cool both SAND and MPD magnet later.

Single Rigid/Flexible VJ Transfer lines ~5m: 3bara/5K He supply, 4.4K He return, 70K GHe supply for thermal shield and magnet coold down, 80K

Cooling Requirements for SAND Magnet and MPD Magnet https://edms.cern.ch/document/2387227/1

	SAND magnet	MPD magnet
Coil cooling scheme	thermosiphon circulation LHe flow system through cooling channels welded to the outside of the coil support cylinder, a solenoid magnet indirectly cooled through a Lhe thermosiphon cycle	Thermosiphon
He supply from cold box	5.2 K and 3 bara with expansion from 3 to 1.2 bara inside the magnet	
Thermal shield cooling method	70K forced cold GHe flow: 50 K gas for thermal shields removed at the 1st turbine output	cooled by force LN2 flow
Current leads	a pair of GHe cooled 3kA leads, cooled by helium vaporized from Lhe reservoir in the Turret	a pair of conduction-cooled 10kA HTS leads; cooling approach to cold ends of Cu leads/warm ends of HTS leads at 80K : conduction-cooled using LN2 circuit; cooling approach to cold ends of HTS leads: conduction- cooled by Lhe
4 K radiation and conduction (W)	55	50 at 4.7K
HTS power lead pair 4.7 K heat load (W)	N/A	25
Current leads' cooling flow	0.4 g/s Ghe	N/A
70 K radiation and conduction (W)	530	500 at 80K
HTS power lead pair 80 K heat load (W)	N/A	500
Operating temperature (K)	4.42	4.7
Operating pressure (bar)	1.2	
Lhe in magnet w/Turret (ltr)	~200	
Lhe reservior in Service Turret (Itr)	~150	
300-70K cool down scheme	300K and 70K Ghe mixing foced flow, 4~5 bara	Ghe forced flow
70-4K cool down scheme	5K 3bara Ghe forced flow	Ghe forced flow
48 07.09.20 D	avid Montanari I Near Site Cryogenics Systems Overview	

LBNF/DUNE

Design Schemes: Comparison

	Scheme I	Scheme II			
	SAND+MPD: two refrigerator systems	SAND and MPD later: one refrigerator system			
Customized Refrigerator capacity External Cryogenic Facilities	2 x ~200W/4.5K	SAND: ~200W/4.5K; SAND+MPD: 400~500W/4.5			
	Two ~200W refrigerators w/LN precool	SAND: one 400~500W refrigerator w/o LN precool; SAND+MPD: one 400~500W w/LN precool			
	2 x~200W refrigerators He recycle compressor + ORS & GMP control cabinet	1 x 400~500W refrigerator He recycle compressor + ORS & GMP control cabinet			
	shared Ghe storage/buffer tank				
	LN2 tank & 2xHe purifiers	LN2 tank & 1x He purifier			
	2x (Warm piping/valve system+ LN2 supply cryo-line)	1x (Warm piping/valve system+ LN2 supply cryo-line)			
Cavern Shaft	2 sets of warm HP (DN80) / LP (DN200) He piping, LN2 supply cryo-line/GN2 vent line	One set of warm HP (DN80) / LP (DN200) He piping, LN2 supply cryo-line/GN2 vent line			
Cavern	2 x ~200W refrigerators Cold Boxes + 2x DVBs	one 400~500W refrigerator Cold Box + 2x DVBs			
	shared LN2 phase separator				

Preliminary P&ID for Scheme II

Preliminary P&ID (Scheme I)

