Time Projection Chambers with MPGDs for SAND

S. Bolognesi, A. Delbart, G. Eurin, P. Granger, S. Hassani (IRFU, CEA)

for the DUNE SAND group

DUNE CDR: Near Detector Review – 09 July 2020

SAND TPCs from ND280-Upgrade

 Momentum reconstruction: Momentum resolution: ~3 % depends on magnetic field, pads numbers and size Momentum scale: ~2 % depends on uniformity of Bfield, Efield, alignment → can be calibrated

Particle identification through dE/dx:

Energy resolution: ~10 % (~45 % more ionization for electrons than muon/pions)

Detectors which we know how to build and which proved stable over time

Electronics

Electronics

ND280-Upgrade design and prototyping Mechanics / electronics cooling

ND280-Upgrade field cage (INFN Padova-Bari)

To keep $\Delta E/E \leq 10^{-4}$ confined at <1cm from FC walls, the TPC cage requirements are : Cathode flatness better than 0.1mm, Micromegas plane flatness better than 0.2 mm, Cathode/Anode planes parallel to within 0.2mm, Field Cage walls flatness better tham 0.3mm Voltage divider resistors matched within rms ~ 0.1%

- 2nd prototype being developed for testing at DESY by end of 2020
- Installation scheduled for 2022 at ND280

• Test beam at CERN (2018): first prototype with large pads and resistive micromegas

- Test beam at CERN (2018): first prototype with large pads and resistive micromegas
- Test beam at DESY (2019): optimized pad size and resistivity (with magnetic field)

- Test beam at CERN (2018): first prototype with large pads and resistive micromegas
- Test beam at DESY (2019): optimized pad size and resistivity (with magnetic field)
- Several detector prototypes tested on dedicated cosmic test bench at Saclay

 → available for SAND prototypes test

- Test beam at CERN (2018): first prototype with large pads and resistive micromegas
- Test beam at DESY (2019): optimized pad size and resistivity (with magnetic field)
- Several detector prototypes tested on dedicated cosmic test bench at Saclay

 → available for SAND prototypes test
- Planned test beam at DESY (2020) with field cage prototype, final electronics and final ERAM design

- Test beam at CERN (2018): first prototype with large pads and resistive micromegas
- Test beam at DESY (2019): optimized pad size and resistivity (with magnetic field)
- Several detector prototypes tested on dedicated cosmic test bench at Saclay

 → available for SAND prototypes test
- Planned test beam at DESY (2020) with field cage prototype, final electronics and final ERAM design
- CERN neutrino platform for field cage tests and final TPC test with cosmics

- Test beam at CERN (2018): first prototype with large pads and resistive micromegas
- Test beam at DESY (2019): optimized pad size and resistivity (with magnetic field)
- Several detector prototypes tested on dedicated cosmic test bench at Saclay

 → available for SAND prototypes test
- Planned test beam at DESY (2020) with field cage prototype, final electronics and final ERAM design
- CERN neutrino platform for field cage tests and final TPC test with cosmics

A lot of expertise developed and an infrastructure already built

SAND dedicated prototyping:

- new pad size and RC values: resistivity of DLC foil + glue thickness
- can be installed in Saclay cosmic bench (PMTs for trigger, gas, cooling, electronics, DAQ, ... and even analysis code!)

13

Performances

• Results from prototype at CERN in 2018: without pad size and resistivity optimization

Improved results at DESY in 2019 with final pad design and improved RC
 => preliminary spatial resolution 3-4 times better than present T2K TPCs

Production prospects

 Micromegas and electronics production for T2K (not resistive) TPC from 2005 to 2009 was very successfull

Final percentage of good modules/produced: Micromegas (82/89) 92%

FEC (499/514) 97% FEM (84/93) 90% 12 **dead MM channels** over 124272 channels (0.01%) **10 years of operation:** amazing stability with only 1 FEM failure and 2HV filters to repair

• The Resistive Micromegas (ERAM) is a **bulk-micromegas: mature technology**, **mastered by CERN, IRFU & some PCB industrials**

 \rightarrow series production of ERAM detector & its Front-End Electronics (FEC & FEM) planned to start at the end of the year for ND280-Upgrade

 \rightarrow will secure the path for production for SAND (DLC procurement, production yield, ...)

Installation and interface

• One possibility: stainless steel 316Ti frame container a la T2K, the so-called "basket"

- Would provide a global structure inside KLOE for the ERAM detectors, the TPCs, etc.
- 3DST could be installed inside such a metal frame
- Cooling of the electronics designed to operate in KLOE along with other SAND
 ¹⁶ components

Schedule

• Current development plan for SAND based on ND280-Upgrade experience:

	2021	2022	2023	2024	2025	2026	2027
ND SAND	R&D for TDR & techno choice	Prototype desing & tests for techno. Choice		Pre-Production / Production / assembly / tests			ND installation
SAND simulations	Conceptual design	Physics si	imulations				
IRFU SAND ASIC	generic ASIC 130 nm design	SAND TPC ASIC 1st proto	2nd prototype	Mask production	Chip production & QA/QC		
TPC vessel (incl. Cage & R&D)	Conceptual design	R&D / prototypes	Detailed design	Full scale prototype 1/2	TPC production		Installation
ERAM	Conceptual design	R&D prototype	Detailed design Full scale proto	pre-production for 1/2 TPC#1 &	ERAM production		
FEE	CDR global architecture	pre-design	Detailed design	FEE V1	1/2 TPC#2 P & Final FEE	re-production production	
Backend		pre-design	Detailed design	Backend V1	1/2 TPC#2 Pre-production & Final backend production		DAQ integration
Services (HV, LV, FO, cables,)	based on T2K upgrade				Specifications	Procurements	Installation
FEE cooling (incl. Global system)			conceptual design	conceptual design proto for 1/2 TPC	Final FEE cool	ing production	Installation

• Major steps taken into account, will be updated as design and installation progress

Summary

- The expertise and infrastructures developed for ND280 vertical TPCs and ND280-Upgrade horizontal TPCs are a phenomenal advantage in the path to build SAND TPCs
- On-going studies to adapt the design to produce prototypes to be installed on Saclay cosmics test-bench
- Clear path to design and build ERAM, electronics, mechanics, infrastructures (gas, cooling, ..)
- Preliminary cost estimates (very detailed thanks to ND280-Upgrade expertise → rescaled to SAND size) is of the order of 2M€
- For additional information: sara.bolognesi@cea.fr & alain.delbart@cea.fr

Astonishing stability/reliability in 10 years for T2K

Mean dE/dx from cosmics

Improvements from T2K-ND280 to SAND

 Spatial resolution for ND280-Upgrade MM1 design

- For SAND, magnetic field 3 times larger than for ND280 (0.2 \rightarrow 0.6 T)
- Better spatial resolution and larger magnetic field
 => Momentum resolution 10 % → 2-3 %

Electronics for the ERAM detector

Sensitivity to beam changes

- Assuming an ECAL + 3DST + TPC configuration
- Rate-only monitor: four non-magnetized 7-ton modules for beam rate and profile at 0, 1, 2 and 3 meters from the beam axis position at the ND site
- Significance to the observation of a change in the beamline with 7 days data taking:

	Parameter description		Significance, $\sqrt{\chi^2}$	
Beam parameter	Nominal	Changed	Rate-only monitor	SAND
proton target density	1.71 g/cm^3	$1.74 \mathrm{~g/cm^3}$	0.02	5.6
proton beam width	2.7 mm	2.8 mm	0.02	3.6
proton beam offset x	N/A	+0.45 mm	0.09	4.3
proton beam theta	N/A	0.07 mrad	0.03	0.5
proton beam $ heta \phi$	N/A	0.07 mrad $ heta$ and 1.5707 ϕ	0.00	1.0
horn current	293 kA	296 kA	0.2	11.9
water layer thickness	1 mm	1.5 mm	0.5	4.2
decay pipe radius	2 m	2.1 m	0.5	7.0
horn 1 along x	N/A	0.5 mm	0.5	4.6
horn 1 along y	N/A	0.5 mm	0.1	3.6
horn 2 along x	N/A	0.5 mm	0.02	0.9
horn 2 along y	N/A	0.5 mm	0.00	0.8

Pad signal waveform modelization

SAND TPC cost estimate

- Including only hardware (no manpower, travel, common funds, technical coordination, ...)
- Except for the cage, pretty accurate estimates (excluding only shipping and integration of TPC in KLOE)

Chips	230 k €
Front-End + Back-End	215 k €
Field cage	1 000 k€
Services (HV, LV, gas system)	350 k €
Cooling	165 k €
Detectors ERAM	300 k €
Total	2260 k€