Straw Tube Tracker for SAND: Design and Overview

R. Petti

University of South Carolina, Columbia SC, USA

for the SAND working group

Review of the DUNE Near Detector Design July 9, 2020

SAND WITH STRAW TUBE TRACKER

- Detector configurations for the SAND inner tracker actively studied (CDR):
 - Thin LAr + 3DST + low-density tracker (either TPC or STT+targets);
 - Thin LAr + STT with multiple integrated targets;
- ✦ Description of full STT configuration with results of complete detector simulations, event reconstruction and physics performance is available in DocDb # 13262: https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262

Green: polypropylene (CH₂) targets (4.7 t FV) Blue: graphite (C) targets (504 kg FV)

A TOOL TO REDUCE SYSTEMATICS

• STT designed to offer a control of ν -target(s) similar to e^{\pm} DIS experiments:

- Typical *v*-detectors: systematics from target composition & materials, limited target options;
- Possible accurate control of target(s) by separating target(s) from active detector(s);
- Thin targets spread out uniformly within tracker by keeping low density $\left| 0.005 \le
 ho \le 0.18 \; {
 m g/cm^3} \;
 ight|$
- \implies STT can be considered a precision instrument fully tunable/configurable

- ◆ Targets (100% purity) account for ~ 97% of STT mass (straws 3%)
- Separation from excellent vertex, angular & timing resolutions.
- Thin targets can be replaced during data taking: C, Ca, Ar, Fe, Pb, etc.
- ⇒ Optimized & engineered design, extensive performance studies

Target & radiator easily unmounted by removing 4 corner screws: density ~0.005 g/cm³

Full module assembly with CH_2 target and radiator: maximal density ~0.18 g/cm³

Full module assembly with graphite (C) target and XXYY straws

3D ENGINEERING MODEL & FE ANALYSIS

- ◆ Complete 3D CAD design of STT modules with straws, radiator, CH_2 and C targets ⇒ On average, C-composite frames add ~ 0.1 X_0 of material \perp to beam direction
- ◆ Detailed Finite Element (FE) analysis of deformations
 ⇒ Maximal deflections in central point of frames ≪ 1 cm

- ◆ Front-end (FE) electronics based on VMM3 ASICs (BNL/CERN): 8 VMM3 per board ⇒ Compact FE boards integrated into C-composite frames (off-the-shelf)
- ◆ Back-end (BE) electronics based on FELIX system (ProtoDUNE & DUNE FD)
 ⇒ FE board FPGAs transfer VMM3a data over gigabit links to the FELIX PCIe cards

MMFE-8 FE board: 512 channels in 215mm x 60mm x 2.54mm, <10 W power

COST & SCHEDULE

- Detailed STT cost estimate mostly based on vendor quotes from CAD drawings: total cost \$6,875,361 excluding manpower for module assembly & tests.
- Manpower required for module assembly and tests:
 10 people to produce one STT module per month (average) ready for shipment.
- Minimum of 3 sites to assemble & test the complete STT: total of about 31 months required to complete all 92 STT modules (30 people).
- ♦ A single straw production line per site with ultrasonic welding is enough: with 3 lines all 231,834 straws in < 26 months (100 straw/day, 12 people).</p>
- ⇒ Preliminary production plans exceed minimum required sites & lines

- Groups with infrastructure & extensive experience in the construction of various straw detectors (ATLAS TRT, COMPASS, Mu2e, NA62, SHiP, COMET, etc.):
 - Georgian Technical University (GTU), Tbilisi, Georgia;
 - Joint Institure for Nuclear Reserach (JINR), Dubna, Russia (International Laboratory);
 - Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia (HEP Laboratory).

+ Several Indian institutions:

Indian Institute of Technology Guwahati (IITG); University of Hyderabad; Indian Institute of Technology Hyderabad; Jawaharlal Nehru University, New Delhi; University of Lucknow; Central University of South Bihar, possible BARC contribution [Annex-II between DAE (India) and DOE (USA) allocated \$10M, request part of that for STT]

- University of South Carolina, USA.
- + Brookhaven National Laboratory (BNL), USA, for electronic readout.
- + Belarusian State University, Minsk, Belarus.

Legend: contributions to STT hardware

PROTOTYPING & TESTS

 Same straws used in COMET and NA62 upgrade & off-the-shelf VMM3 readout: benefit from past and ongoing R&D for other projects.

+ Straw production lines with ultrasonic welding existing / in preparation:

- Existing GTU facility at JINR for COMET experiment (max straw length 2m);
- Existing JINR facility for NA62/SHiP (max straw length 5m);
- Existing PNPI facility (max straw length 5m);
- Dedicated facility for STT production at GTU available by end of 2020 (max straw length 4m);
- Dedicated facility for STT production planned at IIT Guwahati (max straw length 4m).
- USC secured more than enough ASIC chips (latest VMM3 revision, newly produced) to cover needs of entire prototyping and development phase (about 14,000 channels).
- Prototyping and test activity to validate the STT design until 2023 and actual detector construction from 2023 to 2026.

Straw production line with ultrasonic welding operated by GTU

♦ STT prototype being tested at JINR:

- Small scale with 4 XXYY layers of straws built with ultrasonic welding at JINR;
- Front-end electronic readout with VMM3(a) ASICS from Mu2e experiment (BNL);
- Validate straw performance with VMM3(a) readout electronics.
- Extensive tests of straw properties by GTU, JINR, IIT Guwahati, PNPI:
 - Tension of straw walls & wires vs. operating conditions;
 - Detector stability over time, straw relaxation;
 - Overpressure operation and straw deformations;
 - Optimization of materials, small components, and welding process.
- Prototype of graphite target being tested at USC:
 - Mechanical and chemical properties & target assembly;
 - Validate the design of the STT target modules.
- Build 1.6m × 1.6m prototype(s) with C-composite frames planned for STT, followed by a 4m long prototype to validate mechanical assembly & design of STT modules.
- Test-beam exposures of prototypes at CERN, possibly with very-low-energy beams.

2.0 m and 5.0 m Straws

Production and test of 5m and 2m long straws (5mm diameter) IIT Guwahati and JINR

Prototype of graphite target tested at USC: 2 machined tiles 612mm x 612mm x 4mm (isotropic graphite, purity 100 ppm)

PRECISION FLUX MEASUREMENTS

- 103,000/year $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H <u>selected</u> in STT with $\nu < 0.50$ GeV.
- ◆ 131,000/year $\bar{\nu}_{\mu}p \rightarrow \mu^+ n$ on H selected in STT with $\nu < 0.25$ GeV.

 \implies Relative ν_{μ} & $\bar{\nu}_{\mu}$ fluxes to $\sim 1\%$ in one year for $1 < E_{\nu} < 4$ GeV

Roberto Petti

16

Comparing Ar and H measurements within SAME detector imposes stringent constraints on the nuclear smearing in Ar

- + 579,000/year ν_{μ} CC inclusive on H <u>selected</u> after subtracting 7% C bkgnd;
- + 333,000/year $\bar{\nu}_{\mu}$ CC inclusive on H selected after subtracting 16% C bkgnd.

BROAD MEASUREMENT PROGRAM

• Excellent beam monitoring with ECAL+STT with one week of data:

- Variations of horn current, water layer thickness, decay pipe radius, proton target density, proton beam radius, proton beam offset, horn 1 X shift, horn 1 Y shift with $\Delta \chi^2 > 9$;
- Change of beam direction of 0.13 mrad with $\Delta \chi^2 > 9$ (beam divergence 1.5 mrad).

✤ Precision flux measurements with STT:

- Relative ν_{μ} and $\bar{\nu}_{\mu}$ flux from $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ and $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ on H with $\nu < 0.5(0.25)$ GeV: < 1%
- Absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$ elastic scattering: $\sim 2\%$
- Absolute $\bar{\nu}_{\mu}$ flux from QE $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ on H with $Q^{2} < 0.05$ GeV².

◆ Measurements of nuclear effects and constraints of nuclear smearing: H, C, Ar, etc.

- SAND with STT combined with the intensity and $\nu(\bar{\nu})$ spectra at LBNF enable a unique combination of physics measurements within the ND complex:
 - No additional requirements with respect to the long-baseline analysis;
 - Hundreds of diverse physics topics from precision measurements and searches for new physics, complementary to ongoing fixed-target, collider and nuclear physics efforts.
 - \implies Synergies with other components of the ND complex

SUMMARY

- ◆ SAND with STT satisfies and exceeds the ND requirements. It offers a control of *ν* targets similar to e[±] experiments & a fully tunable suite of various target materials.
 ⇒ High resolution detector with momentum scale uncertainty <0.2%
- Realistic STT design based upon off-the-shelf technology developed for other experiments for both the straws and the electronic readout:
 - A complete 3D CAD model of the detector with FE analysis of deformations exists;
 - Cost estimate of the STT mostly based on vendor quotes from CAD drawings;
 - A program of prototyping and tests is ongoing to validate the design and the electronic readout.
- Preliminary plans to produce the complete STT over a period of about 3 years.
- Concept of "solid" hydrogen target: high statistics $\mathcal{O}(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- Detailed performance studies of SAND with STT available in DocDb # 13262: design, GEANT4/FLUKA, reconstruction, physics sensitivity studies, etc. https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13262

Backup slides

STT CORE COSTS

ltem	Cost (USD)	Comment				
Procure straws	1,534,593	Quote from Lamina Tubular Tech., UK				
Procure end plugs	510,035	Cost from NA62, PANDA				
Procure wire spacers	510,035	Cost from NA62, SHiP				
Procure crimping pins	510,035	Cost from NA62, ATLAS TRT				
Procure anode wire	243,658	Quote from Luma metall AB, Sweden				
Procure miscellaneous components	123,000	Cost from NA62, ATLAS TRT				
Procure mechanics & C-fiber frames	1,012,000	Quote from Bercella, Italy				
Procure STT tools	569,000	Cost from other straw detectors				
Procure equipment & consumables	100,000	Cost from other straw detectors				
Procure gas system	515,000	Cost from ATLAS TRT				
Procure cooling system	420,000	Cost from ATLAS TRT				
Procure radiator foils	112,000	Quote from Bloomer Plastics, USA				
Procure polypropylene targets	32,200	Quote from Boedeker Plastics, USA				
Procure graphite targets (ET10)	49,400	Quote from Weaver Industries, USA				
Procure front-end electronics (VMM3)	280,519	Quote from Fraunhofer/BNL				
Procure back-end electronics (FELIX)	92,733	Cost from ProtoDUNE				
Procure HV components	97,489	Quote from CAEN, Italy				
Procure LV components	64,299	Quote from CAEN, Italy				
Procure distribution boards	57,360	Cost from ATLAS NSW				
Procure cables & connectors	62,310	Quote from CERN store				
Total	6,875,361					

ASSEMBLY & TESTS

✤ Manpower required for assembly and tests:

10 people to produce one STT module per month (average) ready for shipment.

✤ Minimum of 3 sites to assemble & test the complete STT:

- Assume 10 people per site for a total of 30 people;
- Total of about 31 months required to complete all 92 STT modules;
- Need an assembly station and a station for acceptance tests per site to optimize work.
- ♦ A single straw production line per site with ultrasonic welding is enough:
 - Existing production lines in operation at JINR, GTU/JINR, and PNPI easily replicable;
 - Each production line can produce about 100 straws/day including quality control with 4 people;
 - With 3 production lines (one per site) all the 231,834 STT straws can be produced in < 26 months.
 - \implies In one month each site would produce 1.2 times the straws needed to assemble one module
- Minimum requirement: 3 production sites, each of them operated by 14 people and equipped with (i) straw production line; (ii) assembly station; (iii) test station.

BEAM MONITORING WITH ECAL+STT

		ECAL+STT	N. 100
Beam parameter	Variation	$\Delta\chi^2$	
Proton target density	+2%	19.6	x^2
Proton beam radius	+0.1 mm	37.4	⁷⁰ X distribution
Proton beam offset X	+0.45 mm	22.2	⁶⁰ H Single spectrum
Proton beam $ heta$	0.070 mrad	0.3	
Proton beam $ heta, \phi$	0.07 mrad $ heta$, 1.57 ϕ	0.2	
Horn current	+3 kA	105.6	30
Water layer thickness	+0.5 mm	22.2	
Decay pipe radius	+0.1 m	48.1	
Horn 1 X shift	+0.5 mm	14.6	0 −60 −40 −20 0 20 40 60 X shift (cm)
Horn 1 Y shift	+0.5 mm	17.7	Sensitive to beam shifts of 7 4cm
Horn 2 X shift	+0.5 mm	0.3	construction to 0.12 mand
Horn 2 Y shift	+0.5 mm	0.2	corresponding to 0.13 mrad

 \implies In one week (3.78 × 10¹⁹ pot) ECAL+STT sensitive to most variations with $\Delta \chi^2 > 9$

Number of straws	231,834
Total straw length (m)	730,600
Straw outer diameter (mm)	5
Average straw length (m)	3.15
Maximal straw length (m)	3.83
Total straw film area (m^2)	11,470
Total straw internal volume (m^3)	14
Total length of C-composite frames (m)	1,205
Number of modules	92
Number of modules with CH_2 target	78
Number of modules with graphite target	7
Number of straw planes	368
Number of FE boards	453
Number of HV channels	368
Number of IV channels	114

OPTIMIZED DESIGN OF STT MODULES

6

READOUT & HV/LV

- ✦ Front-end (FE) electronics based on VMM3 ASICs (BNL/CERN):
 - Off-the-shelf multi-purpose ASIC used by many modern experiments (ATLAS, STAR, SoLID, etc.);
 - Low-power, high performance 64 channel ASIC user configurable;
 - Compact FE boards integrated into C-composite frames with 8 VMM3 chips each, FPGA controlled;
 - Low per-channel cost and well established performance.
- ✦ Back-end (BE) electronics based on FELIX system:
 - Compatible with existing commodity electronics and platform used by ATLAS, PHENIX, etc.;
 - Same system used in ProtoDUNE and baseline option for DUNE FD;
 - FE board FPGAs transfer VMM3a data over gigabit links to the FELIX PCIe cards.

♦ HV & LV components:

- HV maximal rating 1,500 V, LV maximal rating 12 V;
- HV and LV boards share same mainframes (3 or 4 CAEN SY4527) to optimize power and space.

• Excellent electron ID (TR ~ $10^3 \pi$ rejection), angular (~ 1.5 mrad) and E_e resolutions:

Detector	Signal	$ u_e QE$	NC π^0	$\delta_{ m stat}$	$\delta_{ m syst}$	$\delta_{ m tot}$
STT FHC 5y on-axis	5,814	3%	2%	1.3%	${\sim}1\%$	$\sim 1.7\%$
ND-LAr FHC + DUNE-Prism (50%)	18,715	11%	3%	0.7%	$\sim \! 1.5\%$	$\sim 1.7\%$

⇒ Synergy between LAr (syst. dominated) & STT (stat. dominated) measurements

GENERAL PURPOSE PHYSICS FACILITY

- Possible to address the main limitations of neutrino experiments (statistics, control of targets & fluxes) largely reducing the precision gap with electron experiments.
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ Turn the LBNF ND site into a general purpose v&v physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
 - Precision measurements as probes of New Physics (BSM);
 - Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....

 \implies Discovery potential & hundreds of diverse physics topics

• No additional requirements: same control of targets & fluxes to study LBL systematics