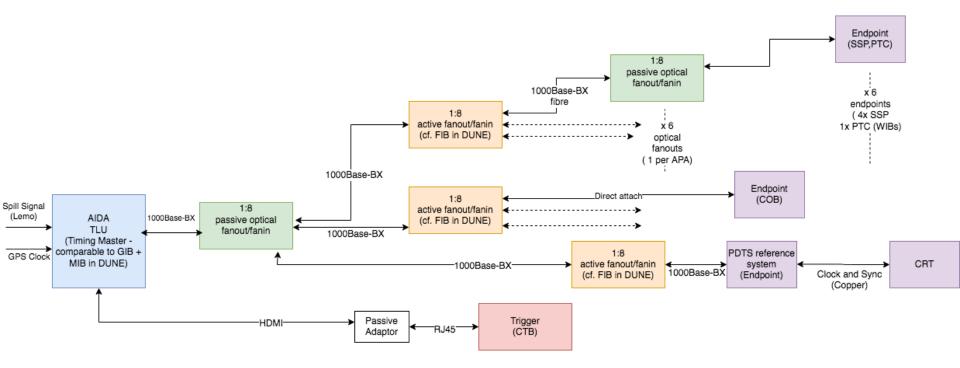
ProtoDune SP Run 1 – Timing & Trigger distribution system

Sudan Paramesvaran on behalf of PD Run 1 timing team DUNE Timing FDR 21/07/2020

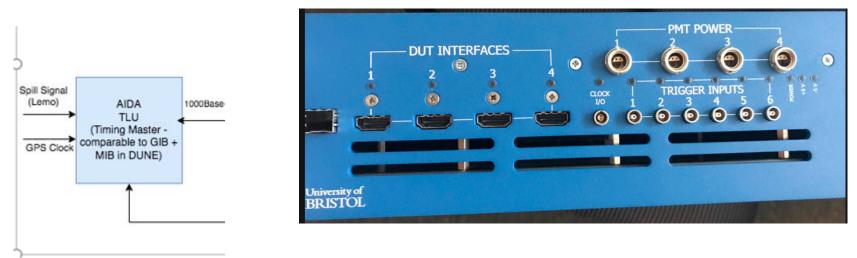
Overview of talk

- Timing & trigger system overview
- Demonstrated functionality
 - GPS/Accelerator interface
 - Active Fanout
 - Timing FMC
 - Protocol
 - Firmware
 - Software
 - Distribution
 - Partially demonstrated functionality
 - Lessons learned
- Relevant EDR Document
 - https://edms.cern.ch/document/2397891/1



Overview of timing and trigger system

- The protoDUNE timing system was installed, commissioned and operated starting in 2017 until the present.
- The primary task of this system was to provide timing information and trigger distribution to the readout electronics of the single-phase ProtoDune experiment.
- The system was designed and built using a combination of custom hardware with off-the-shelf parts.
- A laboratory set-up at Bristol was used to prototype and test all parts of the setup before installation at CERN



Overview of timing and trigger system

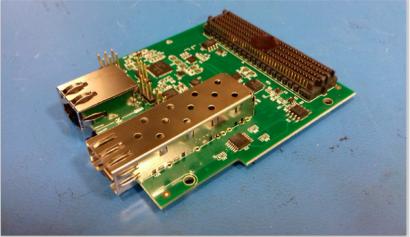
Demonstrated functionality : GPS/Acc interface

- AIDA Trigger Logic Unit (TLU) designed for flexible timing and trigger distribution for HEP
- Unit contains FPGA board, PCB, and power module.
- Unit was used as the Master timing system for ProtoDUNE SP Run 1
 - Received 10 MHz clock from GPS receiver (via WR interface)
 - Generated synchronisation clock and distributed
 - Accepted external trigger signals and distributed
 - Received SPS signals

Demonstrated functionality : GPS/Acc interface

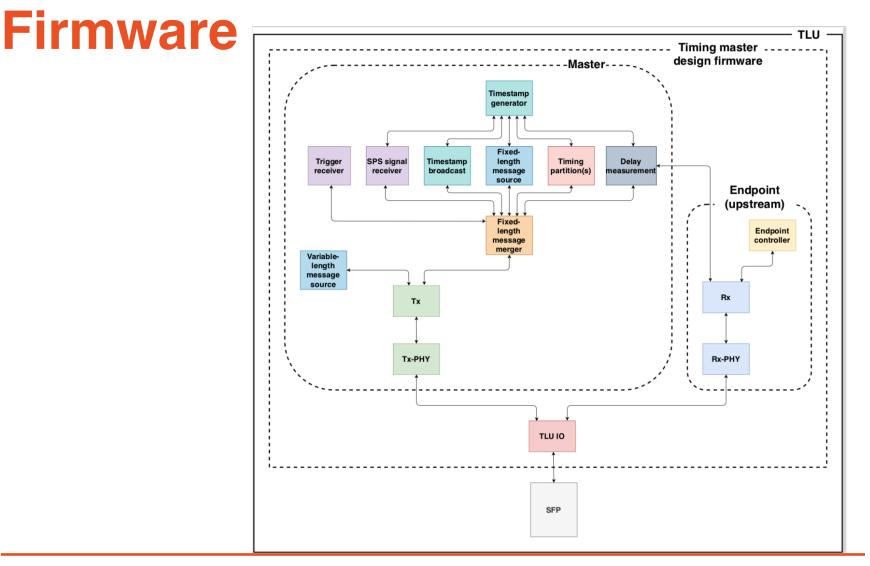
- AIDA Trigger Logic Unit (TLU) designed for flexible timing and trigger distribution for HEP
- Unit contains FPGA board, PCB, and power module.
- Unit was used as the Master timing system for ProtoDUNE SP Run 1
 - Received 10 MHz clock from GPS receiver (via WR interface)
 - Generated synchronisation clock and distributed
 - Accepted external trigger signals and distributed
 - Received SPS signals

6


Demonstrated functionality: Active Fanout

- Active Fan out boxes designed for protoDUNE
- Received timing and trigger signals from TLU and provided 8 outputs on optical fibre
- Can also operate in stand alone mode

Demonstrated functionality: Timing FMC


- Extremely useful versatile board
- Can act as a master or an endpoint
- Can be plugged into a standard FMC connector on host board
- Portable and functional, helped commissioning, lab testing, etc
 - Used for CRT interface in PD run 1
 - Used for tests at ICEBERG (FNAL)
- Can be used for DUNE timing test systems (as part of DAQ kits)
 - Also an endpoint hardware reference design

Demonstrated functionality: Protocol

- The following was demonstrated:
 - Basic principle of operation i.e. distribution of time stamps to readout electronics
 - Clock distribution at 50 MHz, links operating at 250Mbit/s
 - Automated link acquisition, lock and error detection
 - Every packet has a checksum at the end. 8b10b encoding also has to be correct
 - Synchronisation
 - e.g. Setting timestamps in endpoints
 - Bi-directional communication
 - From TLU to Active Fanouts to Endpoints
 - Endpoints modules which could not turn on/off transmitters so had to adjust.

Demonstrated functionality:

Demonstrated functionality: Firmware

- Timing master implementation
 - Trigger generation
 - Before CTB, ability to set random and poisson
 - Rate control and run control
 - Ability to limit trigger rate (implement trigger rules)
 - Vetoing of triggers until run control application accepts them
 - Partitioning
 - Ability to use "groups" which would receive specific commands/requests
 - Interface to Central Trigger Board two separate links to send out timing information and receive trigger information
 - SPS timing signals distribution (spill start, end)

Demonstrated functionality: Firmware

Endpoint implementation

- Demonstrated on four different FPGA families
- Intermediate master implementation timing mezzanine card which can act as the master – used extensively prior to TLU installation
- Debugging and test frameworks (local loopback)

Demonstrated functionality: Software

- Basic board control functionality for all hardware
 - Fixed length, variable length commands
 - Including python wrapper to allow stand-alone command line control and monitoring
 - All basic features required for protoDUNE I operation
 - ArtDAQ board reader for master timing control
 - Interfaced to run control for central configuration

Demonstrated functionality: Distribution

- Copper
 - Twinax cable (direct attach)
 - Twisted pair HDMI RJ45 (CTB)
- Multimode fibre (850nm)
 - Bi-directional one-to-one communication with point-to-point duplex links
 - Fanout distribution to eight endpoints
- Single-mode fibre (1310nm/1550nm)
 - Up to 48 endpoints via passive bi-directional fanout
 - (max distance tested 200m)
- Lab tests of link delay stability across temperature and ageing effects
 - Putting fibre and electronics in environmental chamber

Partially Demonstrated functionality

- Fundamentals
 - Coarse timing alignment adjustment (20ns blocks), (delays set to zero during PD run 1)
 - Individually addressed messages
 - Identifiers for each endpoint
 - activation/de-activation of endpoint transmitters
 - Tested in lab
- Software
 - Timing alignment setup and check (although possible with python wrapper)
- Hardware
 - Operation at 62.5 MHz base clock firmware built without errors, not yet tested
- Firmware
 - fine adjustment of phase not demonstrated

Lessons learned

- Thorough testing in laboratory setting is essential before deployment in experiment!
 - Helped easier debug of several issues
- Timing "kits" sent to endpoint collaborators frequently revealed misunderstandings over usage, firmware etc.
 - More disciplined approach to providing documentation, recipes etc would save time when kits are sent out.
 - Providing timing system as early as possible is crucial to spot bugs important to receive feedback early from systems
- Functionality requirements evolved as the experiment (and endpoint needs) matured led to "critical" development happening on very short time scales.
 - Producing detailed requirements in advance allows resources to be used effectively and reduces number of "high strain" periods.
- Planning in advance the structure of how the software will interface to the firmware is extremely important will help develop coherent control and monitoring.

Summary

- A successful timing and trigger distribution system was developed for protoDune Run I
- Composed of both custom and COTS hardware, dedicated firmware and software
- Functionality demonstrated in several areas, e.g.
 - Timestamp generation, distribution, synchronisation
 - Reception of external signals
 - Distribution on optical, copper
 - Bi-directional links
 - Partitioning
- This provided a solid base from which to develop the Dune Timing System (modular firmware, testing functionality etc) - already reaping the rewards in developing system for protoDUNE II and DUNE.

