DUNE Far Detector SP Timing System Custom Hardware FDR

Jon Sensenig July 21, 2020

Outline

- Brief Timing System Overview
- GPS Interface Board (GIB)
- MicroTCA Interface Board (MIB)
- Fiber Interface Board (FIB)

Timing System: 3 Custom Boards

- GPS Interface Board (GIB)
 - Clock and timecodes from GPS receiver
 - Generate DUNE SP timing system timestamp
 - Transmit to MIB using the timing system protocol
- MicroTCA Interface Board (MIB)
 - Receive timing data-stream from GIB
 - Fan out clock and data to FIBs (COTS AMC carrier)
- Fiber Interface Board (FIB)
 - FMC with 8 SFP modules, hosted by AMC carrier
 - Fans out timing data-stream to timing endpoints

GPS Interface Board

GIB: Functionality

- Derive experiment 62.5MHz clock from 10MHz GPS clock
- Transmit clock + data (312.5Mb/s) to cavern/MIB
- Receive and recover clock and data from cavern/MIB
- Generate DUNE SP 64b timestamp
- Receive GPS timecode in IRIG-B
 - Initialize DUNE SP timestamp ticks since epoch
- Note: Data format uses the timing system protocol.

GIB: Block Diagram

- Receive GPS Clock and Timecode
- Derive experiment clock from GPS clock
- Transmit clock + data to cavern/MIB
- Receive clock + data from cavern/MIB

1000Base-Bx To Cavern

GIB: Power

- Main power in: 12 VDC -
- Main power fused and choked
- $12V \rightarrow 5.5V$ using -DC-DC switching converter
- $5.5V \rightarrow (5V, 3.3V, 2.5V)$ -

5.5V DC-DC

Pwr

2V Main

using LDO's

- $3.3V \rightarrow 1.8V$ LDO clock generator (SI5395) only
- Est. Power usage 23W -

		Power Estimate						
	Part	Description	Occurence	VCC5V	VCC3V3	VCC2V5	VCC1V8	12V Main PW
	LTC6957-2	Sine Wave to LVDS	1		72			
	MAX9371	Low Jitter 5V TTL to LVDS	2	16				
	SN74avc2t45	5V <> 3.3V	1	100	100			
	SN74avc2t45	3.3V <> 2.5V	5		100	100		
	SI5395	Clock Generator	1		302		300	
	LTC2945	Power Monitor	4	1.2				
	24AA025E48T	Board ID EEPROM	1		3			
	LEDs		13		20			
	NB7V52M	Diff, Flip-Flop	6			90		
	ADN2814	CDR	6		145			
	SEP		6		280			
	SN74bc1a32	OR Cata	12		100			
	BCA9539	I2C Extender	12		100			
	TCA9539	120 Extender	2		160	100		
	1CA9548A	120 Switch	1			100		
	LM/5A	i emp Monitor	1		20			
	NC7SZ08	AND Gate	1		50			
	SN65LVDM176	LVDS Transceiver	2		15			
	TXB0104(6)	Level Translator	2		100	100		
		Totals	Current (A)	0.14	5.41	1.14	0.30	
			Power (W)	0.68	17.84	3.76	0.54	22
		Max Power Supply	Current (A)	2		8		
3.3V	Le.	Max Power Supply	Power (W)	11		28		
LDO	LDO							•
5.5V C-DC Choke	5V DO							

GIB: Clocks

- GPS reference clock
 10MHz (sine wave)
- SI5395 low jitter clock generator: derives from reference clock, the 312.5MHz distributed clock

GIB: Data

- Tx: Data sent from FPGA, re-timed with D-type differential FF (NB7V52)
- Rx: Data received and
 clock recovered using
 CDR chip (ADN2814)

GIB: GPS Inputs

- GPS Clock: 10MHz Sine wave to LVDS

_

IRIG-B: 5V TTL signal converted to 2.5V LVCMOS

GIB: FPGA Board

- Carrier & FPGA are both COTS items
- Carrier: Enclustra PM3
- FPGA: Enclustra AX3 Artix-7 module
 - Flexible FPGA module choice
- Used in ProtoDUNE SP run 1 master timing unit (TLU)

Example of how the GIB connects via FMC to Enclustra PM3 carrier board.

GIB: PCB

- 3 layer trace layout (right)
- 2 power planes layers (bottom)
- 8 layers: 3 signal, 2 Pwr, 3 GND

Pin number: R117.2 Pinuse: UNSPE(Net name: GND_POWER

- 0.060in (1.524mm) thickness

GIB: Status

- Submitted for fabrication (July 13) 10 day turn-around
- 10 boards being fabricated, planning to assemble 3.
- Boards will be assembled and tested at Penn

MicroTCA Interface Board

MIB: Functionality

- Receive timing data-stream from GIB
- Fan out clock and data to FIBs (COTS AMC carriers)
- Serialize timing commands and transmit to the timing network
- Phase measurement of incoming timing signals from slaves, i.e.
 FIBs and timing endpoints

MIB: Block Diagram

- Receive timing data from redundant GIBs
- Generate clock and data for all AMC/FIB slots
- IPBus setup/control via Gigabit link
- MMC controller

MIB: Data

- **SFP Rx data from GIB's:** (SFP 1,2) recovered by CDR
 - **SFP Tx data to GIB's:** from FPGA, either re-timed by FF or direct

MIB: Clocks

TONGUE 2 MEZZININE

CONNECTORS

CLOCK FANOUT

FPGA MEZZININE CONNECTORS

CLOCK GENERATOR

CDR SECTION

BOARD STATUS LEDS

Recovered clock, select either SFP 1 or 2 (redundant GIBs)

- Clock fan-out (SI53342) to all AMC/FIB slots

19

MIB: Power

- Main power 12V @ 6.6A from MicroTCA crate
- DC-DC $12V \rightarrow 3.5V$
- LDO for VCC, VP 3.3V and 1.8V
- Estimated power usage 22W

Powe	r Requireme	onte						
rower nequilements						VCC3V3	VP3V3	VP1V8
Part#	Disvription	IDD core (mA)	IDD_out/clk (mA)	No Of Circuits	QTY	IT(mA)	IT(mA)	IT(mA)
Si53344	10x clocks	280	21	10	5	2450		
Si53342	6x clocks	80	21	6	2	412		
SI5394P	4x clocks	250	30	2	1	60		250
NBSG53A	D-FF		50	1	1	50		
AND2814	CDR	145	-	-	1	145		
TE0712_MODULE	FPGA MODULE	3000	-	1	1	-	3000	
SPF_MODULES	SFP	220			2	440		
GREEN_LED	GREEN_LED	20	-	1	1	20		
RED_LED	RED_LED	20	-	1	1	20		
BLUE_LED	BLUE_LED	20	-	1	1	20		
					I (A)	3.617	3	0.25
					Power (W)	11.9361	9.9	0.45

MIB PCB

- 10 layer (5 signal, 1 pwr, 4 GND)

MIB: Status

- Schematic design and PCB layout finished, ready for fabrication.
- Bristol leading the fabrication and testing effort of MIB
- Quotes obtained, submitting PCB for fabrication soon

Fiber Interface Board

FIB: Functionality

- Receives clock and data from MIB
 - Low jitter clock generator (SI5395)
- Tx data to subsystem timing endpoints
 - Retimed onto low jitter clock with D-type FF
- All eight SFP multiplexed onto a single CDR chip
 - $\circ \quad \text{Used to recover clock}$

FIB: Data Tx

- 8 SFPs
- Tx data stream direct from FPGA
- Re-timed by
 high-speed
 differential D-type
 FF with 312.5MHz
 clock recovered
 from MIB

FIB: Data Rx

- (x8 ch) Rx data to8:1 mux to CDR.
- Recovered clock:
 to clock generator
 and FPGA
- Recovered data: to FPGA

FIB: Clocks

- Clock recovered
 from MIB data
 using CDR
 (ADN2814)
 - 1:2 buffer: clock for FPGA and clock generator

-

Clock generator
 reference clock
 received from MIB
 (SI5395)

FIB: PCB

- FIB is a double width
 FPGA Mezzanine
 Card (VITA 57 FMC)
- Has 8 SFP cages
- Carrier board is AMC
- MicroTCA crate, up to 12 AMC/FIBs
 - \circ 10 needed

FIB: Crate

- MicroTCA crate
- 12 slots for FIB/AMCs
- Contains one

MIB per crate.

FIB: Status

- Four boards fabricated
- Assembled FIBs expected this week
- FIB tests will be done by Bristol
- Firmware for initial tests ready

Summary

- GIB submitted for fabrication.
 - Next steps are assembling and testing
- MIB will be submitted for fabrication and assembly soon.
 - Technical discussion underway with fabrication house
- Assembled FIBs expected this week.
 - Initial FIB testing firmware ready

Thank You

Questions?

Backup Slides

GIB: Misc

- **I2C Switch:** Provide unique addr. for SFP, CDR
- I2C I/O Ext.: Handles the LOS, LOL, Fault, SFP

Disable

-

-

- Spare I/O
 - (2) LVDS pairs
 - (4) 5V or 3.3V LVCMOS
- Fan connectors are 12V

