Optimizing top-quark threshold scan at future e⁺e⁻ colliders

Preparatory Joint Sessions on "Open questions and News Ideas" July 7, 2020 Kacper Nowak, Aleksander Filip Żarnecki FACULTY OF PHYSICS UW

Motivation

Top-quark mass is one of the fundamental parameters of the Standard Model.

Measurement of the pair production threshold:

 $e^+e^- \rightarrow t \bar{t}$

is the most precise method to extract it.

However, cross section depends also on other model parameters...

How this influences m_t determination?

Can the threshold scan procedure be optimized?

Benchmark scenario

Assume 10 measurements at the threshold, with 1 GeV step in energy, with 10 fb⁻¹ taken at each energy point (100 fb⁻¹ total).

Generate statistical fluctuation assuming 70.2% event reconstruction efficiency and background level (remaining after cuts) corresponding to the 73 fb K. Seidel et al., Eur. Phys. J. C 73 (2013) 2530 [arXiv:1303.3758]

Cross-section templates

Beneke, M. et al. "Near-threshold production of heavy quarks with QQbar_threshold," Comput. Phys. Commun. 209, 96–115 (2016).

Luminosity spectra

Baseline Fit Results

Fit configuration

Parameter constrains

Statistical uncertainty on top-quark mass vs Yukawa and strong coupling uncertainties

Assuming same background and efficiency, no polarisation

Scan optimization

Genetic algorithm

Genetic algorithm

Each measurement point makes a chromosome. We assume total luminosity is always 100 fb⁻¹ and is equally distributed.

Fits resulting in the parameter values outside the range used to generate templates are ignored.

Creating new individuals

Randomly choosing parts of parents genotype and add random mutation +/- 0.5 GeV

Recombination between 2 homologous chromosomes

We add 5% chance to drop any of measurement points.

July 7, 2020

Total luminosity

Influence of luminosity spectra

Assuming same background and efficiency, no polarisation

Future plans

and possible contribution to Snowmass'2021

We plan to move to a more advanced approach, including:

- impact of beam polarisation
- additional observables
- more detailed analysis of backgrounds and systematic uncertainties

Additional observables

When reconstructing top pair production events, much more information can be extracted than just the production cross section.

Top-quark polar angle distribution

can be used to reconstruct forward-backward asymmetry A_{FB}

Additional observables

When reconstructing top pair production events, much more information can be extracted than just the production cross section.

Peak position of the **top-quark momentum distribution** is also sensitive to top quark mass and other paramaters

CERN-PPE-96-040 http://cds.cern.ch/record/300417 Adapted from arXiv:hep-ph/0207315

Conclusions

Top-quark mass

can be extracted with ~25 MeV statistical uncertainty even in the most general approach, when expected parameter constraints are taken into account.

Scan optimization

Statistical uncertainty of the extracted top-quark mass can be reduced by ~25%, without losing precision in width or Yukawa determination

Plans for Snowmass contribution:

- impact of beam polarisation
- additional observables
- more detailed analysis of backgrounds and systematic uncertainties

July 7, 2020

What is algorithm looking for?

Yukawa uncertainty from 4D fit

(Initial) mass uncertainty

Assumed true mass value from normal distribution

Background level uncetrainty

Change background normalization in pseudo-experiment generation by ±2% Influence on Yukawa coupling determination

