Precision QCD at future DIS facilities

with focus on PDFs at LHeC, FCC-he, ...

Fred Olness (SMU)

Thanks to the LHeC Study Group C. Gwenlan, G. Pownall, M. Klein, N. Armesto, P. Newman, A. Stasto, D. Britzger, J. Rojo, U. Klein, ... *LHeC PDF & Low x Working Group*

and my xFitter colleagues

LHeC Study Group

Snowmass 2021 Energy Frontier 7-8 July 2020

Improved PDFs are Key to Precision Measurements

Measurement of mill at LHC

Much of theory error from PDFs.

E.g., $N^{3}LO gg \rightarrow H$ (PDF is dominant)

" PDF uncertainties are among the leading uncertainties in the first LHC precision measurements by CMS" DIS2018 Plenary

[EPJC 78 (2018) 110, ATL-PHYS-PUB-2018-004]

Fundamental
SM Parameters
limited by PDFs

	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	
$\frac{W^+}{W^-}$	$\begin{array}{c} 8.9\\ 9.7\end{array}$	$\begin{array}{c} 6.6 \\ 7.2 \end{array}$	8.2 7.8	$\begin{array}{c} 3.1\\ 3.3\end{array}$	$5.5\\6.6$	$\begin{array}{c} 8.4\\ 8.3\end{array}$	$5.4 \\ 5.3$	$\begin{array}{c} 14.6\\ 13.6\end{array}$	$\begin{array}{c} 23.4\\ 23.4\end{array}$	[MeV]
$\overline{W^{\pm}}$	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	

Improved PDFs are Key to Precision Measurements

LHeC: A Game Changer

- First Run (3 Years, $\sim 50 \text{ fb}^{-1}$) = $\times 50 \text{ HERA}$
- Complete PDF unfolding in a single experiment
- Precision resolution of parton dynamics
- Extend $\{x,Q^2\}$ kinematic reach by decades
- PDF Extraction free of: i) Nuclear effects,
 - ii) Hadronization iii) higher twist, iv) ...

Unique potential to revolutionize PDFs

LHeC

Also Provides Access to Unique Kinematic Regions

Complementary Coverage

Towards ultimate PDFs at the HL-LHC and LHeC

Exploit **novel facilities** for precision studies of the proton structure

Juan Rojo

EF06 WG meeting, Snowmass 2021

Complementary: ... add a dimension, Sensitivity:

6

A brief tour of the flavors

Up and Down PDFs at Large x

Precision Determination: free from higher twist corrections and nuclear uncertainties **Large x** crucial for HL/HE–LHC & FCC searches Also relevant for DY, M_w etc.

Positron (e⁺) Sensitive to d-valence

Gluon PDF and α_s

Gluon and sea PDFs intimately related. LHeC can disentangle sea from valence quarks at large x, with precision measurements of CC and NC $F_2^{\gamma Z}$ & $xF_3^{\gamma Z}$

High precision alpha-s

c.f., Daniel Britzger presentation last week

Χ

 $\Delta \alpha_{\rm s}(M_{\rm Z})$ (incl. DIS & jets) = $\pm 0.00018_{\rm (exp+PDF)}$

xFitter Developers' Team Eur.Phys.J.C 79 (2019) 10, 864

R.A. Khalek, S. Bailey, J.Gao, L. Harland-Lang, J. Rojo, arXiv:1906.10127 [hep-ph]

Multi-scale problem, HQ PDFs and resummation, ... theory improvements ongoing

LHeC: enormously extended range and much improved precision c.f. HERA

- δMc = 50 (HERA) to 3 MeV: impacts on αs, regulates ratio of charm to light, crucial for precision t, H
- **SMb** to **10 MeV**; MSSM: Higgs produced dominantly via $b\overline{b} \rightarrow A$

Tip of the iceberg Two Sample Topics

Small x Physics & Nuclear PDFs

The Large Hadron-Electron Collider at the HL-LHC

Nuclear PDFs & Collective Phenomena

Work ongoing

Contributions welcome

CERN-ACC-Note-2020-0002

J. Phys. G: Nucl. Part. Phys. 45 (2018) 065003

A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear

Conclusions

LHeC: A Game Changer

to boldy go where no experiment has gone before

- First Run (3 Years, $\sim 50 \text{ fb}^{-1}$) = $\times 50 \text{ HERA}$
- Complete PDF unfolding in a single experiment
- Hi resolution of parton dynamics: a new era of precision QCD
- Explore new $\{x,Q^2\}$ kinematic regions: hi-x & low-x
- Fundamental for hadron collider physics, both SM (Higgs) & BSM, ...

Unique potential to revolutionize PDFs

no other facility

precision determination, free from higher twist corrections and nuclear uncertainties