

Searches for particles with $Q \neq 1$

Matthew Citron

millicharged (Q < 0.1e)

fractionally charged (0.1e < Q< 1e)

multiply charged (1e < Q)

Introduction

- Exotically charged particles theoretically well-motivated
- Focus in these slides on particles with Q < 1
 - Motivation from "**kinetic mixing**" of dark photon (link to the hidden sector)
- Many recent searches with a wide range of detectors
 - Interface of energy and intensity frontier
- Potentially many more detectors in near future how can we **robustly** predict future sensitivity?

Searching for millicharged particles

Searches using colliders, effects on sun, stars and supernovae, cosmological bounds,... cover wide range in masses/charges

but

big gap for heavier (~ GeV) low charged particles

Focus on expanding reach with **new direct detection** experiments

First: scintillation based detection

Scintillation based detection

Initial design in 2016 milliQan LOI: 1200 scintillating bars in three layers (400 pointing paths)

M. Citron mcitron@ucsb.edu

PMT

- Key idea: use scintillator bar array to detect (very) small ionisation from low charged particles
- Expected signal: few scintillation photons in multiple layers
- Each bar + PMT must be capable of detecting a single scintillation photon
- Control backgrounds: signal in each layer within small (~15 ns) time window and which points towards the IP
- Modular design is easy to scale and adapt!

Scintillation based detection

1607.04669

J-PARC with sensitivity for $m < \sim 1.5 \text{ GeV}$ LOI to appear on arXiv soon

Range of detectors with complementary sensitivity

For milliQan: proof of concept "demonstrator" installed at CERN

milliQan demonstrator

Installed on mount designed to hold full detector

M. Citron mcitron@ucsb.edu

- Around 1% prototype of full milliQan detector working with ~40 collaborators
- Ran very successfully, collecting ~35/fb, 2000h of data in 2018
- Operational experience in difficult environment: triggering/DAQ/DQM
- Used for range of studies to prove feasibility of full detector: **alignment, calibrations, background measurements**
- Fully simulated in GEANT4 (validated with data)

6

Search results

With only 37.5 fb⁻¹ and 1% of the full detector, the milliQan demonstrator achieves competitive constraints on mCPs

The demonstrator provides new exclusion limits, but also quantitative understanding of backgrounds and detector performance

→ Use this to guide future detectors!

2005.06518

Snowmass plans

- EOI: Use data from demonstrator to make concrete sensitivity projections for scintillation based detectors at range of facilities: LHC, J-PARC, FERMILAB (and others?)
 - Characterisation/understanding of backgrounds (and how to reject them)
 - Fully validated simulation of signal/background
 - **Performance** of PMTs/scintillator
- Guide design of future detectors based on experience
 - Four layer design shown to be required using special runs of the demonstrator (see backup) - necessary to reject correlated components of background
 - Have complete mechanical design for four layer milliQan (see backup)

Searching for millicharge particles with neutrino detectors

- Neutrino detectors provide sensitivity to millicharged particles through hard (> MeV recoil) electron scattering
- Many recent results!
- Would be interested in collaborating to expand scope of project: full consideration of all complementary methods to search for mCPs!

Fixed source neutrino experiments

General purpose detectors at the LHC

- ATLAS/CMS provide sensitivity to O(100) GeV particles with charges from 1/3e to 8e
 - Multiply charged has range of motivations e.g. H++ in left-right model
- Strategy: trigger on muons and look for low (high) dE/dx ٠ hits in tracker for low (high) charge models
 - For high charge also use muon system for timing (few ns resolution)
- HL-LHC provides opportunity to improve sensitivity
 - E.g. dedicated trigger with RPC timing (1 ns resolution), MTD timing offline for greatly improved mass resolution (30 ps resolution), improved muon system resolution

More details in backup

- A large number of new potential detectors for millicharge particles coming online over the next years
- Benefit greatly from experience with milliQan demonstrator
- We plan to **robustly and consistently** evaluate reach for scintillation based detectors at wide range of sites
- Reach of neutrino detectors complementary: would also like to consider in projections
- General purpose detectors have sensitivity for Q 1/3 e → 8e but future needs further study

Who are we?

Matthew Citron Andy Haas Chris Hill Yu-Dai Tsai Jae Hyeok Yoo

Team includes proponents of milliQan/FERmini/SUBMET

Forming snowmass LOI and welcome collaborators!

This speaker supported by funding from DOE Office of Science

FerMINI Probe of Millicharged SIDM

- Here we plot the electron-scattering Millicharged SIDM see <u>1905.06348</u> (Emken, Essig, Kouvaris, Sholapurkar)
- Yu-Dai Tsai, Fermilab
- Cosmic-Ray Production/Super-K Detection <u>2002.11732</u> (our paper)
- FerMINI can help close the Millicharged SIDM window!

https://indico.cern.ch/event/910753/contributions/3831616/attachments/2053034/3441892/Tsai_MCP_FerMINI.pdf

Current projections

Why milli-charged?

Kinetic mixing with a new massless 'dark' boson can provide link between SM and a hidden/dark sector

Why milli-charged?

Now add fermion charged under new U'(1):

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{4} B'_{\mu\nu} B^{\prime\mu\nu} - \frac{\kappa}{2} B'_{\mu\nu} B^{\mu\nu} + i\overline{\psi}(\phi + ie'B' + iM_{mCP})\psi$$

Standard trick - redefine gauge field B': $B' \rightarrow B' + \kappa B$

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{4} B'_{\mu\nu} B^{\prime\mu\nu} + i\overline{\psi}(\phi + i\kappa e^{\prime}B + ie^{\prime}B' + iM_{mCP})\psi$$

new fermion has small EM charge: milli-charged particle

Proposed milliQan location

- Place detector in CMS experimental site within existing 'drainage gallery'
- Location 33 m from interaction point (including 17 m rock) → beam particles greatly suppressed

drainage gallery

Demonstrator components

- 3 layers of 2x3 scintillator+PMT
 - ~ 1% prototype of full milliQan detector

Demonstrator components

- 3 layers of 2x3 scintillator+PMT
 - ~ 1% prototype of full milliQan detector
- Scintillator slabs and lead bricks
 - Tag thru-going particles, shield radiation

Demonstrator components

- 3 layers of 2x3 scintillator+PMT
 - ~ 1% prototype of full milliQan detector
- Scintillator slabs and lead bricks
 - Tag thru-going particles, shield radiation
- Scintillator panels to cover top + sides
 - Tag/reject cosmic muons

Alignment

- milliQan 'sees' muons from the CMS interaction point
- Check occupancy agreement with expectation
 - Simulate production at CMS interaction point
 - Propagate through CMS material and 17 m of rock considering multiple scattering and CMS magnetic field
- Expected rate: 0.28 ± 0.09/pb⁻¹
- Measured rate: 0.19/pb⁻¹

Calibrations

- In-situ charge calibration
 - Calculate N_{PE} produced by a cosmic muon (Q=1e) per PMT and scale (Q²)
 - Find N_{PE} = 1 for Q ~ 0.003e → consistent with result from full GEANT4 simulation
- Timing calibration
 - Cable length, PMT rise time and geometric differences must be calibrated
 - Achieve ~4 ns resolution → easily sufficient for 15 ns window between hits in layers (as assumed in LOI)

Downgoing cosmics

used for charge calibration

GEANT4 simulation

Calibrated time difference between L3 and L1

M. Citron mcitron@ucsb.edu

23

Background Sources

- The following components potentially contribute to background:
 - **PMT Dark Counts**: overlap of dark rate from three in-line PMTs, or one PMT and two correlated background hits
 - Cosmic and beam muon shower secondaries, especially electrons and gammas, can cause a pulse in each layer of the demonstrator
 - **Radiation** from the cavern, bars, or surrounding material (mostly Pb shielded)
 - **Afterpulses**: Small, delayed pulses in PMTs caused by ionization of residual gases following an initial detection
- A detailed detector simulation allows us to understand these sources in detail

milliQan signal selection

- Selections: event must have exactly 3 hits, at the right time, in a straight path (all with well-behaved signal amplitudes)
- Under these selections, backgrounds are reduced by 5 orders of magnitude
- We categorize signal using # of PE and slab deposits to optimize sensitivity for a wide range of charges

		D (Q: 1	C: 1	<u> </u>
	Selection	Data	Data	Signal	Signal	Signal
		Beam-on	Beam-off	$m_{\chi} = 0.05 \text{ GeV}$	$m_{\chi} = 1.0 \text{ GeV}$	$m_{\chi} = 3.0 \text{ GeV}$
		$t=1106~\mathrm{h}$	t = 1042 h	Q/e = 0.007	Q/e = 0.02	Q/e = 0.1
Common	≥ 1 hit per layer	2003170	1939900	136.4	34.2	5.7
Selections	s Exactly 1 hit per layer	714991	698349	123.1	31.0	5.0
	Panel veto	647936	632494	122.5	30.8	4.9
	First pulse is max	418711	409296	114.3	30.6	4.8
	Veto early pulses	301979	295040	113.9	30.6	4.8
	$\max n_{\rm pe} / \min n_{\rm pe} < 10$	154203	150949	104.2	29.6	4.7
	$\Delta t_{\rm max} < 15 \ \rm ns$	5284	5161	72.8	28.4	4.4
	Slab muon veto	5224	5153	72.8	28.4	4.4
	Straight path	350	361	68.4	28.1	4.2
	$N_{slab} = 0$	332	339	64.8	16.9	0.0
	$N_{slab} \ge 1$	18	22	3.6	11.2	4.2
SR 1	$N_{slab} = 0 \& \min n_{pe} \in [2, 20]$	129	131	47.4	0.4	0.0
SR 2	$N_{\rm slab} = 0 \ \& \ \min \ n_{\rm pe} > 20$	52	45	0.0	16.5	0.0
SR 3	$N_{slab} = 1 \& \min n_{pe} \in [5, 30]$	8	9	1.1	0.5	0.0
SR 4	$N_{\rm slab} = 1 \& \min n_{\rm pe} > 30$	4	4	0.0	8.7	0.0
SR 5	$N_{slab} \ge 2$	1	1	0.0	2.0	4.2

Signal simulation

- Wide range of production mechanisms considered!
- Propagate to detector with response fully simulated in GEANT4
- Expect **new sensitivity** already using demonstrator data

Constant yield contours for triple coincidence ($N_{PE} \ge 1$) from signal **+ demonstrator**

simulation in 35/fb

Mechanical structure for full detector

- Plans for mechanical structure finalised with **four layers**
- Constraints: maximum bars in minimal space: two adjacent detectors of 9x6x4x4 = 864 bars (1 x 1 x 3 m)
- Use mounts as in place in drainage gallery

Background measurement

- Detector **aligned** and **calibrated** measure backgrounds for full milliQan detector
- Major lesson from demonstrator: dark rate subdominant background source
- Motivates update to 'four layer' design → achieve targeted background rate

within 15 ns (pointing to IP)

M. Citron mcitron@ucsb.edu

28

SUBMET location

General purpose detectors at the LHC

- Much larger angular coverage than external detector provides sufficient acceptance for models up to O(100s) GeV but sensitivity only for Q > 1/3 (FCPs)
- Strategies: trigger on muons and look for low dE/dx hits in tracker (1210.2311, 1305.0491)
- In phase 2, CMS outer tracker only provides binary output
- Searches with dE/dX from (upgraded) muon system? Dedicated triggers? Dedicated low dE/dx readout bit? Timing measurement from MTD? Considerations for ATLAS/future detectors?

- Range of theory motivations: AC leptons, doubly charged Higgs (leftright model), technibaryons
- Current searches rely on dE/dx and timing measurements from muon system
- Phase 2: improvements from resolution upgrades to muon system, timing measurements from MTD

Searching for multicharge: phase 2

- Dedicated HSCP trigger using RPC timing (~ns resolution)
- Mass resolution improvement with MTD timing
- Dedicated HIP flag (no dE/dx info from outer tracker)
- Improved muon system resolution for higher charge models
- What about unstable multicharge particles: doubly charged vertex reconstruction with tracker/endcap?

TDR-17-001

M. Citron mcitron@ucsb.edu

Fraction of events/(1 GeV)