PPS at the HL-LHC

EF06: Low x, BFKL

Justin Williams July 15, 2020

justinwilliams@ku.edu

Study processes with exchange of colorless objects:

- Displacement of the protons from the beam determines the protons' momentum loss $\xi = \frac{\Delta p}{p}$
- Potential to reconstruct all final state particles
- Conservation of momentum

CMS Precision Proton Spectrometer

PPS offers the ability to measure proton kinematics in space and time

Detectors located at 210m and 220m on both sides of CMS

By measuring kinematics in PPS, IP kinematics can be reconstructed

Time of flight measurement allows vertex position to be reconstructed

$$M = \sqrt{s\xi_1\xi_2}$$
$$Y = \frac{1}{2}log\left(\frac{\xi_1}{\xi_2}\right)$$

PPS is comprised of near-beam, moveable machinery called Roman Pots (RPs). RPs are the housing for tracking and timing detectors.

Diamond timing detectors

+ Sufficient resolution \sim 25 $\mu{\rm m}$

3D Pixel detectors

• Radiation hard

- Time resolution \sim 50 ps for ideal conditions
- Radiation hard

PPS Run II performance

- PPS recorded over 110 fb⁻¹ of data in Run II.
- 2016 dilepton analysis published in JHEP
- "Standard candle" $\gamma\gamma \rightarrow \ell^+\ell^- \text{ observed at } 5.1\sigma$

Ongoing studies in CMS

- Anomalous Couplings (see Cristian's talk)
- Axion-Like Particle searches
- Missing mass searches
- Exclusive top pair production

Detector locations at the HL-LHC

196m Station

Interesting for high masses

220m Station

· Similar to the Run II setup

234m Station

Requires slight rearranging of DQR

420m Station

- Cold region of LHC
- Not suitable for RPs, needs new technology
- Needed for Higgs physics

Station	M _{min} (GeV)	M _{max} (GeV)
196m	1100 - 1200	2750
220m	520 - 533	960
234m	262 - 265	370
420m	43 - 47	163

Conditions at the HL-LHC

Challenging conditions to overcome at the HL-LHC:

- \cdot Increased pileup (\sim 200)
- Detector radiation
- Vertical/horizontal crossing angles (CMS prefers vertical)
- Impedance for certain LHC locations

Mass and rapidity acceptance

Figure 1: Mass and rapidity acceptance for PPS detectors at various locations for vertical beam crossing (left) and horizontal beam crossing (right).

A rich physics program is available with these detectors.

- \cdot Discussed in the PPS TDR
- Exclusive $b\bar{b}$ production (main background for Higgs searches)
- Search for exclusive SUSY particle production
- Central exclusive Higgs production

- PPS in Run II covered mass ranges between 350 GeV 2 TeV
- Potential to cover masses between 43 GeV 2.8 TeV with all 4 proposed stations
- New technology required for 420m station
- Proton simulations for HL-LHC conditions are being prepared

