

Office of Science

UPC Physics for Snowmass 2021: first discussion/selected topics

Daniel Tapia Takaki University of Kansas

Snowmass 2021 QCD and forward Physics working group July 15, 2020

Photon-photon, photon-p, photon-A collider

Probing QCD matter with UPCs

Initial state Physics of the proton and nuclei Nuclear structure at high energies Gluon saturation phenomena, etc

Daniel Tapia TakakiSnowmass 2021 – QCD & Forward PhysicsJuly 15, 2020

Plan of this talk

- First discussion on physics prospects for UPCs for Snowmass 2021
 - Just selected theory/pheno and experimental results for now, to kick off the conversation here mainly from LHC energies, but results at HERA and RHIC also interesting
- Together with various theorists and experimentalist, we plan to prepare a paper on UPCs - covering various topics and physics questions and new ideas for Snowmass 20201

Exclusive VM photoproduction

The energy dependance of the cross section Suggested as a signature of gluon saturation

Daniel Tapia TakakiSnowmass 2021–QCD & Forward PhysicsJuly 15, 2020

Typical gluon "size"

From Yuri Kovchegov Snowmass 2021 July 2020

6

t-distribution

 t-differential measurements give a gluon tranverse mapping of the hadron/ nucleus.

hadron b virtual photon

The study of the t-distribution

Appearance and location of diffractive dips: signature of gluon saturation Here: Dipole Cross-Section: $t = (p_A - p_{A'})^2 = (p_{VM} + p_{e'} - p_e)^2$ σ_{qq} sat non-sat $\mathsf{V}=\mathsf{J}/\psi,\,\phi,\,\rho,\gamma$ 00000 Q_s^2 0000 dilute linearregime А A **Dipole Radius** J/ψ

small size (J/ Ψ): cuts off saturation region large size (φ , ρ , ...): "sees more of dipole amplitude" \rightarrow more sensitive to saturation

17

Ø

From T. Ullrich, IS 2017

t-distribution Exclusive VM in γp

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

Daniel Tapia TakakiSnowmass 2021–QCD & Forward PhysicsJuly 15, 2020

Signature of gluon saturation

9

Exclusive ρ^0 in γp

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

High energy points !

Dissociative/Incoherent production

Daniel Tapia Takaki Snowmass 2021–QCD & Forward Physics July 15, 2020

Exclusive and dissociative production

12

Mass dependance and energy dependance

Nucl. Phys. B934 (2018) 330-340

Exclusive

Daniel Tapia TakakiSnowmass 2021 – QCD & Forward PhysicsJuly 15, 2020

Nuclear gluon density

UPC studies provide the best information the community will get for the next 10 years before, the EIC turns on

Coherent J/ψ

Phys. Lett. B772 (2017) 489-511

Model independent. Parametrization of exclusive J/Ψ data in gamma-protor i.e. No nuclear effects

Experimental evidence of nuclear gluon shadowing

Nuclear effects at Low x

Coherent J/ψ photoproduction off Pb nuclei By V. Guzey, et. al using Phys. Lett. B726 (2013) 290–295 and latest ALICE and CMS results

Daniel Tapia TakakiSnowmass 2021–QCD & Forward PhysicsJuly 15, 2020

Nuclear gluon density: Future prospects

https://arxiv.org/pdf/1812.06772.pdf

Daniel Tapia TakakiSnowmass 2021 – QCD & Forward PhysicsJuly 15, 2020

Beyond Nuclear PDFs

Exclusive dijets: Only process known to be directly sensitive to the gluon Wigner distribution

Daniel Tapia TakakiSnowmass 2021 – QCD & Forward PhysicsJuly 15, 2020

First diffraction measurement in heavy-ions & prospects for inclusive UPCs

Useful for MC tuning of cosmic ray physics Models of multiplicity studies in pPb Diffraction is sensitive to gluon saturation

First diffraction study in pPb

CMS HIN-18-019

Large rapidity gap technique

vs. rapidity gap size

Summary

- Discussed a selection of recent UPC results at LHC.
 Exploring fundamental questions on QCD and probing QCD matter. Today presented some ideas and selected results
 - Studying UPC J/ ψ in γPb already found evidence of nuclear gluon shadowing at low-x and Q_2
 - Energy dependent studies of the t-distribution of UPC ρ_0 in γp promising for determining the onset of gluon saturation
- Future projects and new/novel ideas:
 - New detectors at LHC and RHIC
 - Novel physics analysis methods and techniques
 - Ideas future experiments, including at EIC
- Together with experimental and theoretical colleagues will start preparing a short paper on UPCs to be submitted to Snowmass 2021