

Caveat: we already have discussed the interplay/complementarity between single H and HH searches to probe the Higgs boson self-coupling (see EF01 meetings) at e+e- and pp machines.

Today I'm going to focus on HH and what a unique signature is to probe new physics.

Caterina Vernieri (SLAC)

HH at pp colliders

HH production allows to probe the self-coupling: $\Delta\sigma/\sigma\sim\Delta\lambda/\lambda$ if $\lambda\sim\lambda_{SM}$

HH at pp colliders

HH production allows to probe the self-coupling: $\Delta \sigma/\sigma \sim \Delta \lambda/\lambda$ if $\lambda \sim \lambda_{SM}$

HH at future e+e-linear colliders

- The intrinsic precision (1% level) on single Higgs production processes is one of the main advantages of e^+e^- beams
- HHvv requires $e_L^-e_R^+$, the use of polarized beams could increase the cross-section by a factor ~2
- For both **ZHH** and **HHvv** processes there are diagrams involving the self-coupling in constructive/deconstructive interference with diagrams that do not contain this coupling.
 - No matter what is the sign of the deviation of the Higgs self-coupling from its SM value, one process is always enhanced

Which precision on λ is needed?

Sensitivity to models with the largest new physics effects, in which new particles of few hundred GeV mass appear in tree diagrams or as s-channel resonances

Sensitivity to mixing of the Higgs boson with a heavy scalar with a mass of order 1 TeV (i.e. electroweak baryogengesis)

Sensitivity to a broad class of loop diagram effects that might be created by any new particle with strong coupling to the H Sensitivity to typical quantum corrections to the Higgs self-coupling generated by loop diagrams

Which precision on λ is needed?

Sensitivity to models with the largest new physics effects, in which new particles of few hundred GeV mass appear in tree diagrams or as s-channel resonances

Sensitivity to mixing of the Higgs boson with a heavy scalar with a mass of order 1 TeV (i.e. electroweak baryogengesis)

Sensitivity to a broad class of loop diagram effects that might be created by any new particle with strong coupling to the H Sensitivity to typical quantum corrections to the Higgs self-coupling generated by loop diagrams

Interplay between precisions inference and direct searches for new particles

Most recent projections for HL-LHC

	Statistical-only		Statistical + Systema	
	ATLAS	CMS	ATLAS	CMS
$HH o bar{b}bar{b}$	1.4	1.2	0.61	0.95
HH o bar b au au	2.5	1.6	2.1	1.4
$HH o bar b\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow bbVV(ll\nu\nu)$	-	0.59	-	0.56
$HH o b \bar{b} Z Z(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined		Combined	
	4.5		4.0	

- \cdot A combined significance to the **SM HH process of 4\sigma** can be achieved with all systematic uncertainties
 - This corresponds to ~50% (silver) precision on the Higgs self-coupling (largely driven by the HH)
- Estimates of the sensitivity to HH at HL-LHC are based on:
 - · dedicated studies with smeared/parametric detector response, corresponding to pile-up of 200
 - extrapolations from **early** Run-2 analyses
- More sophisticated (= sensitive) results on their way
 - · It would be great to take into account for Snowmass21 the actual sensitivity of HL-LHC

HH at future pp colliders

122

124

50

118

120

- The FCC-hh with 30/ab at 100 TeV and assuming similar performance to the HL-LHC detectors
 - 2.9-5.5% (gold) depending on the systematic assumptions

126

128

130

 $m_{\gamma\gamma}$ [GeV]

		$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	$b\bar{b}ZZ^*$ (4 ℓ)	$b\bar{b}WW^*$ (2j $\ell\nu$)	$b\bar{b}b\bar{b}$ +jet
$\kappa_{\lambda} = \lambda/\lambda_{SM}$	$\delta \kappa_{\lambda}$	3.5-8.5%	12%	14%	40%	25%

Studying HH at e+e-

- · Both the bbb and bbWW final states are considered with Z to leptons/neutrino/quarks
- For **ILC analyses** with an expected luminosity of 4/ab at 500 GeV, the combination of the various channels yield a precision of 16.8% on the HH total cross section which corresponds to an uncertainty of 27% on κ_{λ} coupling.
- For **CLIC** studies at 1.4 TeV, evidence for vvHH production is found with a significance of 3.6 σ , and the ZHH process can be observed at this stage with a significance of 5.9 σ
 - The ambiguity in the interpretation of the total cross-section results is resolved by measuring the HH invariant mass distribution in the vvHH process.

HH & self-couplings, a 'short' summary

The goal for **future machines** beyond the HL-LHC should be to be able to reach at least **gold quality (5-10%)** precision for the Higgs boson self-coupling

- **Future circular lepton** machines (CEPC/FCC-ee@240GeV) will benefit from very large datasets at the Higgs, WW (and top pair) thresholds.
 - · The Higgs self-interaction can be probed only through single-H
- **Lepton Linear machines**, ILC250 and CLIC380, can probe the Higgs self-coupling through the single-H, and reach levels of **50% precision**
 - They can probe the self-coupling through HH
 - It will be important to have data at two different CM energies to reach the silver level of precision.
- Future circular hadronic machines, FCC-hh (100 TeV), allow for both higher luminosities and high energies compared to the HL-LHC
 - The sensitivity to the self-coupling is largely driven by the HH searches

collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
ILC_{250}	49%	_	49%
ILC_{500}	38%	27%	22%
ILC_{1000}	36%	10%	10%
$CLIC_{380}$	50%	_	50%
CLIC_{1500}	49%	36%	29%
CLIC_{3000}	49%	9%	9%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC	-	15%	15%
FCC-hh	-	5%	5%
	$\begin{array}{c} \text{HL-LHC} \\ \text{CEPC}_{240} \\ \text{ILC}_{250} \\ \text{ILC}_{500} \\ \text{ILC}_{1000} \\ \text{CLIC}_{380} \\ \text{CLIC}_{1500} \\ \text{CLIC}_{3000} \\ \text{FCC-ee} \\ \text{FCC-ee} \ (4 \ \text{IPs}) \\ \\ \text{HE-LHC} \end{array}$	HL-LHC 100-200% CEPC ₂₄₀ 49% ILC ₂₅₀ 49% ILC ₅₀₀ 38% ILC ₁₀₀₀ 36% CLIC ₃₈₀ 50% CLIC ₁₅₀₀ 49% CLIC ₃₀₀₀ 49% FCC-ee 33% FCC-ee (4 IPs) 24% HE-LHC -	HL-LHC 100-200% 50% CEPC ₂₄₀ 49% - ILC ₂₅₀ 49% - ILC ₅₀₀ 38% 27% ILC ₁₀₀₀ 36% 10% CLIC ₃₈₀ 50% - CLIC ₁₅₀₀ 49% 36% CLIC ₃₀₀₀ 49% 9% FCC-ee 33% - FCC-ee (4 IPs) 24% -

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

HH & self-couplings, a 'short' summary

The goal for **future machines** beyond the HL-LHC should be to be able to reach at least **gold quality (5-10%)** precision for the Higgs boson self-coupling

- **Future circular lepton** machines (CEPC/FCC-ee@240GeV) will benefit from very large datasets at the Higgs, WW (and top pair) thresholds.
 - · The Higgs self-interaction can be probed only through single-H
- **Lepton Linear machines**, ILC250 and CLIC380, can probe the Higgs self-coupling through the single-H, and reach levels of **50**% **precision**
 - They can probe the self-coupling through HH
 - It will be important to have data at two different CM energies to reach the silver level of precision.
- Future circular hadronic machines, FCC-hh (100 TeV), allow for both higher luminosities and high energies compared to the HL-LHC
 - The sensitivity to the self-coupling is largely driven by the HH searches

_				
	collider	single-H	HH	combined
	HL-LHC	100-200%	50%	50%
	CEPC ₂₄₀	49%	_	49%
	ILC_{250}	49%	_	49%
	ILC_{500}	38%	27%	22%
	ILC_{1000}	36%	10%	10%
	CLIC_{380}	50%	_	50%
	CLIC_{1500}	49%	36%	29%
	$CLIC_{3000}$	49%	9%	9%
	FCC-ee	33%	_	33%
	FCC-ee (4 IPs)	24%	_	24%
	HE-LHC	-	15%	15%
	FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

* arXiv:2004.03505 2.9-5.5% depending on the systematic assumptions

What about the other HH mechanisms? >> not really explored for the ESG

Caterina Vernieri (SLAC)

VBF HH @LHC

- two high p_T forward jets provide a very specific topology
- allow to probe c_{2v} (VVHH), c_v and κ_{λ}

- First search from ATLAS in the $b\bar{b}b\bar{b}$ final state in Run2
 - It probes large deviations of c_V and c_{2V} from their SM predictions, which result in a harder m_{HH} spectrum and higher momentum for the b-jet from the Higgs boson decay.
- VBF production mode will benefit at the HL-LHC from the extended tracker acceptance and the improved ability to identify forward jets from the hard-scattering
 - —> it would be great to understand the potential of HL-LHC to probe the HHVV vertex

Perspective on c₂v at FCC-hh

- c_V will be measured with a few permille precision at e+e-
- the cubic Higgs self-coupling contribution is suppressed at the multi-TeV mass values
- the constraints on δc_{2V} at **FCC-hh is** expected to be better than ±1%
 - a large improvement compared to the precision that can be obtained at the HL-LHC.

$$\delta_c = c_{2V} - c_V^2$$

arXiv:1409.8074 arXiv:1904.07886

- While in a linearized realization the ttH and the ttHH vertices (c_t and c_{tt} in SMEFT) are correlated
 - one may probe these couplings independently by exploiting the ttHH channel
 - Important input in an agnostic global fit for non-linear EFT parameters along with the parameters affecting the tth, ggh and gghh vertices
- The ttHH cross section increases by a factor of ~ 75 upon going from the 14 TeV to the 100 TeV pp machine

Figure 10.15: $\sigma/\sigma_{\text{SM}}$ as a function of κ_{λ} (left) and $\kappa_{t\bar{t}HH}$ [GeV⁻¹] (right), where $\kappa_{t\bar{t}HH} = -m_t c_{tt}/v^2$.

Higher energies are needed to probe ttHH vertex directly

Beyond HH, quartic coupling

- An estimate for FCC-hh is based on the bbbbyy signature, assuming an optimistic (80%) and a conservative (60%) scenarios on the btagging efficiency.
 - $\kappa_4 \in [-2.3, 4.3]$ at 68%CL (10.2)
- At future e+e- colliders the SM rate for triple Higgs production can be accessed only at the very high energies.
 - the cross-section strongly depends on κ_4 , and so it is possible to obtain significant constraints.
 - The constraints that can obtained at CLIC at 3 TeV via W boson fusion HHH production are similar to those that would be obtained at a FCC-hh 100 TeV

- While one of the major objectives is certainly the determination of the trilinear Higgs self-coupling, many BSM models have new particles
 - · One of the most spectacular signatures is resonant HH production
 - · Care must be taken to incorporate interference effects to correctly interpret results
- Many models predict additional scalar particles that can also be produced in pairs or in association with the observed Higgs boson:
 - expanding di-Higgs production to di-scalar production

Caterina Vernieri (SLAC)

- For CLIC: hh → bbbb more sensitive than ZZ or WW (all limited by statistics, backgrounds are lowest)
- · The HL-LHC study is limited to the resonance mass range between 1.0 and 3.0 TeV due to the extrapolation procedure
 - Higher mass range should be within the reach of HL-LHC
 - · Lower mass will require either dedicated trigger or investigating other final states (such as bbyy)

JHEP 02 (2020) 002

4b final state (extrapolated from Run 2 CMS results) Note that requires good trigger performance for multi-

jet final states

Summary & Conclusions

- · Several studies are available to understand the potential of future colliders to probe the Higgs boson self-coupling
 - The goal for **future machines** beyond the HL-LHC should be to be able to reach at least **gold quality (5-10%)** precision for the Higgs boson self-coupling
 - HL-LHC potential to probe direct HH production has to be better understood with more sophisticated Run 2 analyses
- · Clear complementarity between lepton and hadronic machines:
 - Single vs HH production
 - Direct access to additional production mechanisms to fully study the Higgs boson potential (VVHH, ttHH)
- We need to better connect the **precision goals for the measurement of HH production** at future colliders, and the implications of each level for the discovery new physics scenarios.
 - Exploring HH production and more generally di-scalar production will set some benchmark to the collider energy and/or trigger performance
 - Any information missing from existing publications?

spares

Complementarity between e+/e- and pp

- High energy lepton colliders in the very high energy regime could become very powerful discovery machines
 - competitive with future hadronic colliders

Constraints on κ_{λ}

Cate

Besides affecting the cross section, BSM modifications to $\kappa_{\lambda} = \lambda/\lambda_{SM}$ affect the HH kinematic too (mainly m_{HH} and p_{T,H})

HH, a variety of final states

H(bb) is a key element in the exploration of HH at the LHC highest BR

good b-jets identification performance: 70% efficiency at 0.3-1% q/g mistag probability

$H(\gamma\gamma)$

clean final state and great trigger and reconstruction efficiency of photons

excellent myy resolution, ~1%

Exploring the bbbb final state

Several assumptions have been made to model the systematic uncertainties

- Theoretical uncertainties have been assumed to be reduced by a factor of two with respect to those used in the Run 2 analyses, thanks to the expected developments in both higher-order calculation as well as in the reduction of PDF uncertainties.
- **Experimental** systematic uncertainties are assumed to scale as \sqrt{L} , until a pre-defined lower limit is reached
 - depending on the intrinsic detector limitations, according to detailed simulation studies of the upgraded detector.
 - It is assumed that the degradation due to higher pileup conditions will be compensated by improvements in the reconstruction algorithms

Source	Uncertainties	
Luminosity	1-1.5%	
Muon efficiency (ID, iso)	0.1-0.4%	
Electron Efficiency (ID, iso)	0.5%	
Tau efficiency (ID, trigger, iso)	5% (if dominant 2.5%)	
Photon efficiency (ID, trigger, iso)	2%	
Jet Energy Scale	1-2.%	
Jet Energy Resolution	1-3%	
b-jet tagging efficiency	1%	
c-jet tagging efficiency	2%	
light-jet mistag rate	5% (at 10% mistag rate)	

- EF01 will be working closely together with EF04 within the SMEFT framework:
 - Estimate EFT uncertainties (NLO, dim-8 effects, linear vs quadratic...), new physics in backgrounds, theoretical constraints (positivity, analyticity)
 - More combined Higgs and top analysis
 - 1. effects of top dipoles or 4 fermion ops. with tops
 - 2. constraints on top EW couplings from their NLO effects in Higgs and diboson processes (particularly relevant for low-energy colliders below ttH threshold)
 - Include differential observables
 - Explore more flavor scenarios (and make connection with flavor data)
- SMEFT is a baseline, how we account for specific assumptions and model-dependency?
 - Complementarity with new physics searches