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History of cLFV searches

Hincks & Pontecorvo
[Phys. Rev. 73 (1948) 257]

muon IS not an “excited
electron”

Lokanathan & Steinberger
[Phys. Rev. A 98 (1955) 240]

lepton flavors
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MEG Experiment

[Eur.Phys.J. C76 (2016) 8, 434]
BR(u ->ey) <4.2x 1013



U -> ey searches

et 28 MeV/c muons are stopped on a
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U -> ey searches

/ e’ 28 MeV/c muons are stopped on a
thin target

U+

/ Positron and photon are

monochromatic (52.8 MeV),
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Ingredients for a search of y -> ey

Reconstruct the
Reconstruct the Positron Energy
Relative Angle
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The MEG Experiment

Reconstruct the | LXe calorimeter (XEC)
Reconstruct the Positron Energy
Relative Ang/e et 16 Drift Chambers (DC)
in a magnetic field
‘ DC TC 30 scintillating bars
U+ * for timing & trigger (TC)
Y
LXe / Reconstruct the Ha- X etector
* Relative Time

Reconstruct the

thOtOn Energy L Thin Superconducting Coil
Muon Beam "-'.;l /— Stopping Target
7.5 X 1014 H on ta rget Drift Chamber ———_ - “'\/ N — Timing Counter

BR(p->ey)<4.2x1073 @ 90% C.L.




MEG-|

- The MEG experiment has been upgraded in all sub-
detectors

Larger LXe volume
with finer light
detector granularity ©- 3

|

Higher beam intensity )

Unique-volume Drift Chamber |



MEG-II status

" First photons in the upgraded
i XEC in 2017
ol , 1 Oe ~ 1% @ 52.8 MeV
1 — 2o BEAMY . W ——:
2 3 4 5 6 7T 8 9 10 energy spectrum e Lkttt -
Number of Hits 2000 | =
TC built and commissioned o —— :
in 2016-2017 “E L S

OT ~ 35 PS

New DC under
commissioning

Expected to be fully
operational in 2021

oe ~ 130 keV




MEG-I| status

o pgraded
e
I\ - - e
M First physics } B lev
i run in 2021 K MEG fnalraalit || ——
Expected UL ;
~6 x 1014 ] |
In @ 3-year run BEBE S s der
0 10 20 30 40 S50 60 70 80 90 100 ﬂlﬂg
oe fully
operational in 2021
oe ~ 130 keV




What next?

G. Cavoto, A. Papa, FR, E. Ripiccini and C. Voena
Eur. Phys. J. C (2018) 78: 37



Ingredients for a search of y -> ey
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Ingredients for a search of y -> ey

Continuous (fo avoid pileup)

positive (to avoid capture by

nuclei in the stopping target)
muon beams

~ 108 p/s available at PSI| now

PSI is considering a beamline
with > 10° p/s

Prospects for DC muon beams at
PIP-1I (Fermilab) are under study
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Ingredients for a search of y -> ey

Reconstruct the
Relative Angle

W

d

e-l—

Reconstruct the
Positron Energy

W

Magnetic spectrometer to get the
best resolutions

52.8 MeV/c —> large multiple
scattering —> very low material
budget (ideally a gaseous detector)

The target itself contribute
significantly to the angular resolution
(target as thin as possible —> low
momentum beam, as
monochromatic as possible)
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Positron Reconstruction at High Beam Rate

MS makes useless an extreme position resolution (e.g. silicon
detectors) and plays in favor of light gaseous detectors, but...

'g': '8 | q 25%/year
E | 20%/year '
2 Expected aging
. e (gain loss) in the
22 .
- | oy MEG-II Drift
18 ’?," l'lf ol ﬁ: - e iy Chamber
lq II]‘ ;]l , 1 l i ' : | 0
-100 -50 0 50 100
Z [cm]

A. Baldini et al., EPJ C 78 (2018) S, 380

...would a gaseous detector be able to cope with the
very high occupancy at > 10° u/s?

Solutions for a gaseous detector with high rate capabilities are also
under study (new geometries, optical readout,...)
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Muon Stopping Target

- The target plays a crucial role in determining the positron angular
resolution, due to the Multiple Coulomb Scattering:

- target must be as thin as possible

- |In order to stop a significative fraction of muons, it must be at the Bragg
peak:

- muons not stopped by the target are stopped in the gas right after,
giving background without contributing to the signal

= enough thickness to stop ~ all muons
Optimal target

Be, 90 pm

.......................................................... b Oms(e?) ~ 2.5 - 3 mrad

B 15



Ingredients for a search of y -> ey

Reconstruct the
Photon Energy
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Calorimetry vs. Photon Conversion

Calorimetry

High efficiency
Good resolutions

MEG:
LXe calorimeter
10% acceptance

Photon Conversion

Low efficiency (~ %)
Extreme resolutions
+ ey Vertex
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Calorimetry vs. Photon Conversion

Calorimetry

High efficiency
Good resolutions

Photon Conversion

MEG:
LXe calorimeter
10% acceptance

Catorime&rj
Improved cator&me&rj

Q
\\
Low efficiency (~ %)

Extreme resolutions Beam Rabe
+ ey Vertex

£14 Exp. UL

Photon Conversion
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Ingredients for a search of y -> ey

Y
/ Reconstruct the

* Relative Time
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Photon and Positron timing

Timing plays a crucial role in py -> e y searches (accidental
coincidences!!l):

need a very good positron and photon timing

o(Tey) ~ 80 ps in MEG-II

LiBra(Ce) calorimeters + positron scintillating counters like in MEG
can give the required performances

For photon conversion, need to detect et or e” In a fast detector

scintillators

What about stacking
multiple layers?

converter 20



Photon and Positron timing

Timing plays a crucial role in py -> e y searches (accidental
coincidences!!l):

need a very good positron and photon timing

o(Tey) ~ 80 ps in MEG-II

LiBra(Ce) calorimeters + positron scintillating counters like in MEG
can give the required performances

For photon conversion, need to detect et or e” In a fast detector

- N Effective converter
)Q\Sdmmators material with lower £
Worse compromise of

- — converter efficiency vs. resolution
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A conceptual design

Positron TC
Photon TC

22



—Xpected Sensitivity
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A few 101° seems to be within reach for a 3-year run at ~ 108 p/s with
calorimetry (expensive) or ~ 10° p/s with conversion (cheap)

Fully exploiting 109 p/s and breaking the 10-1° wall

seem to require

a hovel experimental concept -



A beam for py -> e yand p -> 3e at FNAL

Credit: R. Bernstein



Muon beam for muon LFV decays at FNAL

- PIP-Il can provide a huge amount of muons - is It reasonable
to think about ap ->e v/ p -> 3e program at FNAL?

1. Start from the MuZ2e beam line

2. make the beam positive (easy), continuous (easy -
propagation in the beam line spread the muon arrival
times, muon lifetime makes the rest), low momentum
(difficult) and monochromatic (very difficult)

- Some ideas came out recently to get the necessary low-
momentum, monochromatic beam (time-varying
deceleration) — can get > 10" p/s
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Muon beam for muon LFV decays at FNAL

Alternate running of y -> e conversion, Y -> ey and y -> 3e
experiments would be possible in the same place, with great
advantages in terms of community building and return on investment

An application for a staff exchange project (aMUSE), including activities
related to this opportunity, has been submitted to the European

Community (ERC RISE program) o6



Sackup



High Intensity Muon Beams

+ High intensity muon beams are crucial in the search for cLFV

- A few projects to get muon beams 1 or 2 orders of
magnitude more intense than now are under study around
the world:

- HMB @ PS

- MuSIC @ RCNP (Osaka, Japan)

- prospects for DC muon beams at PIP-Il (Fermilab, USA)
are under studies

28



The HIMB Project @ PS

- PSlis designing a high intensity muon beam line (HIMB) with a goal of
~ 10" u/sec (x100 the MEG-II beam)

- Optimization of the beam optics:
- Improved muon capture efficiency at the production target

- Improved transport efficiency to the experimental area

=2 1.3x 10" u*/s @ 2.3 mA |, transported

x4 U capture eff. O i
X0 U transport eff. ® tF
LN |
1.3 X 1010 u/ S Large aperture (500 mm) . 5" rotated slab

bending magnets Beamline of solenoids .

- - similar to current uE4
In the experimental area o

with 1400 kW beam power .. - . /-

A. Knecht, SWHEPPS2016 59



2roduction target

The ring cyclotron at PS
also serves a neutron
spallation source (SINQ)
downstream of the m/u
production target

the proton beam need
to be mostly preserved
-> thin production
target
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The MuSIC

Project @

RCN

At RCNP in Osaka (Japan) the goal is to fully exploit the
proton beam power with a thick production target:

- 10° p per Watt of beam power (vs. 10% p/W at HIMB)

PCS

S. Cook et al., Phys. Rev. Accel. Beams 20 (2017)

MTS with CD

Proton beam

Thick production
target

1 capture solenoid

4 x 108 p/s

at the production target
with 400 W beam power
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U -> ey searches

MEG was operated
with 3 x 107 p/s

MEG-II will be operated

Bace ~ 0 with 7 x 107 p/s

efficiency-dominated regime

1/UL ~ rps

B Exp‘ UL

Bacc >> 1
background-dominated regime
1/UL ~ S/{B ~
~(Fue)/J(F2e 8Ee...) = J(e/6Ee¢...)

Beam Kake
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Reconstruction: Limiting factors — Calorimetry

Photon Statistics Scintillator Density] Light Yield Decay Time
o | [g/cm®]  [ph/keV] [ns]
Scintillator time constant LaBr3(Ce) 5.08 63 16
| LYSO 7.1 27 41
Detector segmentation YAP 5.35 22 26
LXe 2.89 40 45
Nal(TI) 3.67 38 250
BGO 7.13 9 300

LaBrs3(Ce) — a.k.a. Brillance looks a very good candidate:

- our simulations & tests indicate that ~ 800 keV resolution can be
reached

- extreme time resolution (~ 30 ps)
- large acceptance
- Very expensive
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Conversion Probability

Interactions in the converter

(conversion probability, ete- energy

loss and MS)

Large Z materials (Pb, W) give the
best compromise of efficiency vs.

resolution

=t
|

0051

0

—-

Resolution [MeV]

Reconstruction: Limiting factors — Conversion

|

dd.

— Signal
“ — Background |

d\'tx

ey

R

Can take advantage of the
photon direction determination
form the e+e- reconstruction

ey
05°¢ Oy
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Toward the next generation of uy -> e y searches:
Positron Reconstruction

Tracking detectors in a magnetic field are the golden
candidates:

high efficiency

better resolutions w.r.t. calorimetry (o(Ee) down to 0.2% vs. > 1%)

Performances are limited by Multiple Scattering of 52.8
MeV positrons in target and tracker materials

Need a very light detector (the MEG drift chambers gave ~ 2 x
1073 Xo over the whole positron trajectory, 200 um silicon
equivalent)

Silicon trackers are likely to be not competitive with gaseous
detectors in terms of resolutions (C-H. Cheng et al. arXiv: 1309.7679)
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Positron Reconstruction at High

Beam)

Rate

R[cm]
P R B 8

0
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:
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il ' e |

50

1400 -50 0

Z [cm]
A. Baldini et al., MEG Upgrade Proposal, arXiv:1301:7225

. 25%/year

20%/year

15%/year

I |

10%/year

i 5%/year
0

100

Expected aging
(gain loss) in the
MEG-II Drift
Chamber

Would a gaseous detector be able to
cope with the very high occupancy at > 10° p/s?
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An active conversion layer

Low Z active material for timing deteriorates the best efficiency/
resolution configuration

- the active layer must be as thin as possible
Scintillators have poor “timing to thickness” figures (~ 1 ns for 250 pm

filbers)
Time Difference Detector 1 - 2, MIP, bias 2.3V/um
FAST SILICON DETECTORS b ofoompomen R (72 o
(= 1 ¥ capacitance) | l\* m ooooro:?‘:% ooo:oz:s
R&D on going for PET application “F [\
(TT-PET) F f \
- S
%ﬁ“ﬁ:ﬁ S e T e " 04 0.6 o8
Time (ns)
gamma ray
g, = (150 £ l)ps = (106 + 1)ps
t \/i \ T 1)p:
M. Benoit et al., JINST 11 (2016) no. 03, PO3011 — —
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Possible Scenarios

CALORIMETRY
Resolution
Variable w/o vix detector w/ TPC vtx detector w/ silicon vitx detector
conservative optimistic conservative optimistic
Oy | Pey [mrad] 7.3/6.2 6.1/4.8 3.5/38 8.0/74 6.3/6.9
Tey [ps] 30
E. [keV] 100
E, [keV] 850
Efficiency [%] 42% (70% y acceptance)
PHOTON CONVERSION
Resolution
Variable w/o vitx detector w/ TPC vtx detector w/ silicon vtx detector
conservative optimistic conservative optimistic
Oey | ¢¢y, [mrad] 7.3/6.2 6.1/4.8 35/3.8 8.0/74 6.3/69
Tey [ps] 50
E, [keV] 100
E, [keV] 320

Efficiency [%] 1.2 (1 LAYER, 0.05 Xo)




MEG-II Highlights - The L Xe Calorimeter

First events/spectra from 2017 data

We developed large-area (12x12 mm?), R ——————=
UV-sensitive MPPCs to cover the inner ™} energy spectrum e
face of the LXe calorimeter El )
1500 — 3
Better Resolution, better pile-up rejection i ryreT— ;
500 T R 1. o : _::‘

ol . — A 3x10*
0 10 20 30

Ot ~ 1%, Oposition ~ 2/5 mm (x,y/z)

w
o



MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read
out by 3x3 mm? SiPM

Complete detector took data in

2017
ml-'iber 1 Fiber 2
#0
mFiber 9 Fiber 6 Fiber 8

Calibration with
dedicated laser

positron track 40




MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read
out by 3x3 mm? SiPM

Complete detector took data in

2017
<1012 Overall Resolutions \
2 - T T T T T I |
= ]
k=
= 60 n ——
>
& S0
-
a0l .
“ - Already reached
T L the design resolution

2 3 4 5 6 7 N 9 10
Number of Hits
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MEG-II Highlights - The Drift Chamber

Wiring, assembly and sealing have been
completed

Had to face severe problems of wire fragility in
presence of contaminants + humidity

On beam in Fall 2018

Oe ~ 130 keV, Oangles ~ & mrad, 2x larger positron efficiency
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MEG-II Highlights - RDC, DAQ, Trigger

50% of acc. background photons come from
RMD w/ positron along the beam line

Can be vetoed by detecting the positron
INn coincidence with the photon

e* from RMD

———

Muon beam (Accidnetal e* frorm mn

| Drftchamber " | A new detector (LYSO + plastic scint.)

— e —— built and tested in 2017 -> 16% better sensitivity

Timing counter

IN a single, compact system

Trigger and DAQ will be integrated T f ‘ I ‘ I H ‘
(WaveDAQ) 144 ﬁ E

2
3 5 -

Up to 256 Channels

Also provides power and amplification
for SIPM/MPPC

Successfully tested in 2017
Wlth XEC, TC and RDC Gbit Ethernet 220 V



MEG-I| schedule & sensitivity

2013 2014 2015

2016

2017 2018 2019 2020 2021 2022

@ rrorosAL

Construction & Commissioning

Branchin Ratio
o

10 13

12

k—— MEG final result

10 14

Ll

~ MEG ]l in 3 years

1 1

0 10 20 30 40 S50 60 70 80 90 100

weeks

Engeneering Runs

Physics Runs

6 x 1014
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Silicon detector momentum resolution

Mu3e momentum resolution (B = 1T)
4x worse than MEG-II

Relative momentum resolution

————
6 hits /8§ = 70°
| — Single Helix (Karimiki)

30/ - —— Triplets : " " * eeq
ol GBL (Single Helix) . / Single Helix (Kariméki)
[ .- GBL (Triplets) ‘ * Neglect MS
2% _ Triplets
* MS fit

GBL (General Broken Lines)

* Fast global track refit with full
covariance matrix

* Equivalent to Kalman filter

1% |

0 p [MeV/c] 53

A. Kozlinskiy, Mu3e Collaboration, CTD/WIT 2017 45



DeeMee / COMET / Mu2e

Electron Spectrometer COMET: Will start phase-|
commissioning ~ 2019

phase-Il SES ~ 1017

Tracker

Hodoscope .
DeeMee: will start

data taking soon m e

Secondary Beamline

Pulsed Proton

SiC Primary Target

--------
......................
.,

MuZ2e: Data taking
expected ~ 2022
SES < 10716 46




Mu3e

,-_'r"_-‘ '. - \
( ~

L ‘f:.i). 'l :
ELER) Seintillating
\ _:ig:.::.: tiles

scintillating
fibres -

R&D almost completed
Commissioning will start soon
Data taking expected > 2020

Expected BR UL ~ 1016
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