

$\mu \rightarrow e \gamma$ Experimental Aspects

RF05: CLFV - Muon Decays and Transitions July 2nd, 2020

INFN

Francesco Renga INFN Roma

History of cLFV searches

Hincks & Pontecorvo [Phys. Rev. 73 (1948) 257] muon is not an "excited electron"

Lokanathan & Steinberger [Phys. Rev. A 98 (1955) 240] *lepton flavors*

$\mu \rightarrow e \gamma$ searches

Accidental Background

28 MeV/c muons are stopped on a thin target

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Radiative Muon Decay (RMD)

$\mu \rightarrow e \gamma$ searches

Reconstruct the Photon Energy

The MEG Experiment

MEG-II

 The MEG experiment has been upgraded in all subdetectors

MEG-II status

TC built and commissioned in 2016-2017 σ_T ~ 35 ps First photons in the upgraded XEC in 2017 $\sigma_E \sim 1\% @ 52.8 \text{ MeV}$

New DC under commissioning Expected to be fully operational in 2021 $\sigma_E \sim 130 \text{ keV}$

MEG-II status

What next?

G. Cavoto, A. Papa, FR, E. Ripiccini and C. Voena *Eur. Phys. J. C (2018) 78: 37*

Reconstruct the Photon Energy

Reconstruct the Photon Energy **Continuous** (to avoid pileup) **positive** (to avoid capture by nuclei in the stopping target) muon beams

 $\sim 10^8\,\mu/s$ available at PSI now

PSI is considering a beamline with > $10^9 \,\mu/s$

Prospects for DC muon beams at PIP-II (Fermilab) are under study

Reconstruct the Photon Energy Magnetic spectrometer to get the best resolutions

52.8 MeV/c —> large multiple scattering —> very low material budget (ideally a gaseous detector)

The target itself contribute significantly to the angular resolution (target as thin as possible —> *low momentum beam, as monochromatic as possible*)

Positron Reconstruction at High Beam Rate

• MS makes useless an extreme position resolution (e.g. silicon detectors) and plays in favor of light gaseous detectors, but...

...would a gaseous detector be able to cope with the very high occupancy at > $10^9 \,\mu/s$?

 Solutions for a gaseous detector with high rate capabilities are also under study (new geometries, optical readout,...)

Muon Stopping Target

- The target plays a crucial role in determining the positron angular resolution, due to the Multiple Coulomb Scattering:
 - target must be as thin as possible

enough thickness to stop ~ all muons

- In order to stop a significative fraction of muons, it must be at the Bragg peak:
 - muons not stopped by the target are stopped in the gas right after, giving background without contributing to the signal

Optimal target Be, 90 µm

Ingredients for a search of $\mu \rightarrow e \gamma$

Reconstruct the Photon Energy

Calorimetry vs. Photon Conversion

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

Calorimetry vs. Photon Conversion

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

Ingredients for a search of $\mu \rightarrow e \gamma$

Reconstruct the Photon Energy

Photon and Positron timing

- Timing plays a crucial role in μ -> e γ searches (accidental coincidences!!!):
 - need a very good positron and photon timing
 - $\sigma(\text{Te}\gamma) \sim 80 \text{ ps in MEG-II}$
- LiBr₃(Ce) calorimeters + positron scintillating counters like in MEG can give the required performances
- For photon conversion, need to detect e⁺ or e⁻ in a **fast detector**

What about stacking multiple layers?

Photon and Positron timing

- Timing plays a crucial role in μ -> e γ searches (accidental coincidences!!!):
 - need a very good positron and photon timing
 - $\sigma(\text{Te}\gamma) \sim 80 \text{ ps in MEG-II}$
- LiBr₃(Ce) calorimeters + positron scintillating counters like in MEG can give the required performances
- For photon conversion, need to detect e⁺ or e⁻ in a **fast detector**

Effective converter material with lower Z

Worse compromise of efficiency vs. resolution

A conceptual design

Expected Sensitivity

A few 10^{-15} seems to be within reach for a 3-year run at ~ $10^8 \mu$ /s with calorimetry (*expensive*) or ~ $10^9 \mu$ /s with conversion (*cheap*)

Fully exploiting 10¹⁰ µ/s and breaking the 10⁻¹⁵ wall seem to require a *novel experimental concept*

A beam for μ -> e γ and μ -> 3e at FNAL

Credit: R. Bernstein

Muon beam for muon LFV decays at FNAL

- PIP-II can provide a huge amount of muons is it reasonable to think about a μ -> e γ / μ -> 3e program at FNAL?
 - 1. Start from the Mu2e beam line
 - 2. make the beam **positive** (easy), **continuous** (easy propagation in the beam line spread the muon arrival times, muon lifetime makes the rest), **low momentum** (difficult) and **monochromatic** (very difficult)
- Some ideas came out recently to get the necessary lowmomentum, monochromatic beam (*time-varying deceleration*) — can get > $10^{10} \mu/s$

Muon beam for muon LFV decays at FNAL

Alternate running of μ -> e conversion, μ -> e γ and μ -> 3e
experiments would be possible in the same place, with great advantages in terms of community building and return on investment

 An application for a staff exchange project (aMUSE), including activities related to this opportunity, has been submitted to the European Community (ERC RISE program)

Backup

High Intensity Muon Beams

- High intensity muon beams are crucial in the search for cLFV
- A few projects to get muon beams 1 or 2 orders of magnitude more intense than now are under study around the world:
 - HiMB @ PSI
 - MuSIC @ RCNP (Osaka, Japan)
 - prospects for DC muon beams at PIP-II (Fermilab, USA) are under studies

The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of $\sim 10^{10}\,\mu/sec$ (x100 the MEG-II beam)
- Optimization of the beam optics:
 - improved muon capture efficiency at the production target
 - improved transport efficiency to the experimental area

x4 μ capture eff. x6 μ transport eff.

1.3 x 10¹⁰ μ/s

in the experimental area with 1400 kW beam power

Production target

- The ring cyclotron at PSI also serves a **neutron spallation source** (SINQ) downstream of the π/μ production target
 - the proton beam need to be mostly preserved
 -> thin production target

The MuSIC Project @ RCNP

- At RCNP in Osaka (Japan) the goal is to fully exploit the proton beam power with a thick production target:
 - 10⁶ μ per Watt of beam power (vs. 10⁴ μ/W at HiMB)

Thick production target π capture solenoid

4 x 10⁸ μ/s

at the production target with 400 W beam power

S. Cook et al., Phys. Rev. Accel. Beams 20 (2017)

$\mu \rightarrow e \gamma$ searches

γ Reconstruction: Limiting factors — Calorimetry

- Photon Statistics
- Scintillator time constant
- Detector segmentation

_	Scintillator	$f Density] [g/cm^3]$	Light Yield [ph/keV]	Decay Time [ns]
nt	$LaBr_3(Ce)$	5.08	63	16
	LYSO	7.1	27	41
	YAP	5.35	22	26
	LXe	2.89	40	45
	NaI(Tl)	3.67	38	250
	BGO	7.13	9	300

- LaBr₃(Ce) a.k.a. *Brillance* looks a very good candidate:
 - our simulations & tests indicate that ~ 800 keV resolution can be reached
 - extreme time resolution (~ 30 ps)
 - large acceptance
 - very expensive

γ Reconstruction: Limiting factors – Conversion

- Interactions in the converter (conversion probability, e+e-energy loss and MS)
- Large Z materials (Pb, W) give the best compromise of efficiency vs. resolution

 Can take advantage of the photon direction determination form the e+e- reconstruction

$$d_{e\gamma}^{\text{vtx}} = \sqrt{\left(\frac{X_e - X_\gamma}{\sigma_X}\right)^2 + \left(\frac{Y_e - Y_\gamma}{\sigma_Y}\right)^2}$$

Toward the next generation of μ -> e γ searches: Positron Reconstruction

- Tracking detectors in a magnetic field are the golden candidates:
 - high efficiency
 - better resolutions w.r.t. calorimetry ($\sigma(E_e)$ down to 0.2% vs. > 1%)
- Performances are limited by Multiple Scattering of 52.8 MeV positrons in target and tracker materials
 - Need a very light detector (the MEG drift chambers gave ~ 2 x 10^{-3} X₀ over the whole positron trajectory, 200 µm silicon equivalent)
 - Silicon trackers are likely to be not competitive with gaseous detectors in terms of resolutions (C-H. Cheng et al. arXiv: 1309.7679)

Positron Reconstruction at High Beam Rate

Expected aging (gain loss) in the MEG-II Drift Chamber

Would a gaseous detector be able to cope with the very high occupancy at $>10^9\,\mu/s?$

An active conversion layer

- Low Z active material for timing deteriorates the best efficiency/ resolution configuration
 - the active layer must be as thin as possible
- Scintillators have poor "timing to thickness" figures (~ 1 ns for 250 μm fibers)

FAST SILICON DETECTORS

 R&D on going for PET application (TT-PET)

M. Benoit et al., JINST 11 (2016) no. 03, P03011

Possible Scenarios

CALORIMETRY

Resolution								
Variable	w/o vtx detector w/ TPC vtx detector		detector	w/ silicon vtx detector				
		conservative	optimistic	conservative	optimistic			
$\theta_{e\gamma} / \phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9			
$T_{e\gamma}$ [ps]			30					
E_e [keV]			100					
E_{γ} [keV]			850					
Efficiency [%]			42% (70%	% γ acceptanc	e)			

PHOTON CONVERSION

Resolution									
Variable	w/o vtx detector	tector w/ TPC vtx detector		w/ silicon vtx detector					
		conservative	optimistic	conservative	optimistic				
$\theta_{e\gamma} / \phi_{e\gamma} \text{ [mrad]}$	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9				
$T_{e\gamma}$ [ps]			50						
E_e [keV]			100						
E_{γ} [keV]			320						
Efficiency [%]			1.2 (1 LA	YER, 0.05 X ₀)					

MEG-II Highlights - The LXe Calorimeter

Better Resolution, better pile-up rejection

$$\sigma_{\rm E} \sim 1\%$$
, $\sigma_{\rm position} \sim 2/5 \text{ mm} (x,y/z)$

First events/spectra from 2017 data

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Calibration with dedicated laser

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Already reached the design resolution

MEG-II Highlights - The Drift Chamber

Wiring, assembly and sealing have been completed

Had to face severe problems of wire fragility in presence of contaminants + humidity

On beam in Fall 2018

 $\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad, 2x larger positron efficiency

MEG-II Highlights - RDC, DAQ, Trigger

50% of acc. background photons come from RMD w/ positron along the beam line

Can be vetoed by detecting the positron in coincidence with the photon

A new detector (LYSO + plastic scint.) built and tested in 2017 -> 16% better sensitivity

Trigger and DAQ will be integrated in a single, compact system (WaveDAQ)

Also provides power and amplification for SiPM/MPPC

Successfully tested in 2017 with XEC, TC and RDC

MEG-II schedule & sensitivity

Silicon detector momentum resolution

Mu3e momentum resolution (B = 1T) 4x worse than MEG-II

A. Kozlinskiy, Mu3e Collaboration, CTD/WIT 2017 45

DeeMee / COMET / Mu2e

Mu3e

R&D almost completed Commissioning will start soon Data taking expected > 2020

Expected BR UL ~ 10⁻¹⁶