

June 23, 2020 Snowmass, Accel. UC Davis

The proton Electric Dipole Moment method with the Hybrid-ring Yannis K. Semertzidis IBS-CAPP & KAIST

- The hybrid storage ring (E-field for bending, with alternate magnetic focusing) is a major advance in battling systematic errors
- It eliminates the first order systematic errors

Hadronic EDMs

• Sensitive to New Physics. SUSY-like NP sensitivity at 10³ TeV

• Sensitive to theta_QCD<10⁻¹⁰ related to axion and perhaps dark matter. Storage ring pEDM will improve sensitivity by three to four orders of magnitude!

- Recent work shows sensitivity to Dark Matter/Dark Energy
- Alternative systems also needed to pinpoint CP-violation source

Bill Marciano

Generic Physics Reach of d_p~10⁻²⁹e-cm

 $d_{p}\sim 0.01(m_{p}/\Lambda_{NP})^{2}tan\phi^{NP}e/2m_{p}$ ~10⁻²²(1TeV/ Λ_{NP})²tan $\phi^{NP}e$ -cm

If ϕ^{NP} is of O(1), $\Lambda_{NP} \sim 3000 \text{TeV}$ Probed! If $\Lambda_{NP} \sim O(1 \text{TeV})$, $\phi_{NP} \sim 10^{-7}$ Probed!

Unique Capabilities!

Bill Marciano

Heavy Leptons...

EDMs may soon be discovered: $d_e, d_n, d_p...d_D$ Or significantly constrain "New Physics" Eg CP violation in $H \rightarrow \gamma \gamma$ (Contemporary topic) CP violation better explored by 2 loop edms than all diboson ($\gamma \gamma$, ZZ, WW...) modes at the LHC! Atomic, Molecular. Neutron, <u>Storage Ring</u> (All Complementary)

EDM: Frozen spin method in electric ring. Proton spin is aligned with the momentum vector

Dark Matter/Dark Energy: frozen spin method in electric ring, spin is kept in the radial direction

arXiv:2005.11867v1 [hep-ph] 25 May 2020

Hybrid storage ring: electric bending, alternate magnetic focusing
It allows simultaneous clock-wise (CW) and counter-clock-wise (CCW) storage

•It eliminates the main syst. error sources: ext. B-fields and vertical electric fields

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 034001 (2019)

Hybrid ring design in the storage-ring proton electric dipole moment experiment

S. Haciömeroğlu¹ and Y. K. Semertzidis^{1,2,*} ¹Center for Axion and Precision Physics Research, Institute for Basic Science (IBS/CAPP), Daejeon 34051, Republic of Korea ²Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

(Received 25 October 2018; published 5 March 2019)

A new, hybrid design is proposed to eliminate the main systematic errors in the frozen spin, storage ring measurement of the proton electric dipole moment. In this design, electric bending plates steer the particles, and magnetic focusing replaces electric. The magnetic focusing should permit simultaneous clockwise and counterclockwise storage to cancel systematic errors related to the out-of-plane dipole electric field. Errors related to the quadrupole electric fields can be eliminated by successive runs of magnetic focusing with different strengths.

DOI: 10.1103/PhysRevAccelBeams.22.034001

Hybrid storage ring lattice

Use E-field for particle bending, alternate magnetic focusing allows CW and CCW storage

Parameter	Magnitude	Description
p_0	$0.71 \ \mathrm{GeV}/c^2$	Magic momentum
eta	0.59	= v/c, the particle speed
R_0	$95.5~\mathrm{m}$	Deflector radius
C	800 m	Ring circumference
f_c	$0.22 \mathrm{~MHz}$	Cyclotron frequency
f_x	$0.51 \mathrm{~MHz}$	Horizontal betatron frequency
Q_x	2.3	Horizontal betatron tune
f_y	$0.49 \mathrm{~MHz}$	Vertical betatron frequency
Q_y	2.2	Vertical betatron tune
E_0	4.4 MV/m	Deflector electric field
k	$0.2 \mathrm{~T/m}$	Quadrupole strength
L_{quad}	$40 \mathrm{~cm}$	Quadrupole length
L_{str}	4.6 m	Straight section length (incl. quad.)
N	48	Number of cells

Table 1: The lattice parameters for the storage-ring proton EDM experiment.

Hybrid storage ring lattice

- Highly symmetric ring lattice
- Reduced Intra-Beam-Scattering issues

0.10

0.12

0.14

0.16

Quad Strength k [T/m]

0.18

0.20

What happens with misaligned elements?

Running the EDM experiment

Potential systematic error: tilted E-field plates

Clock-wise and counter-clock-wise vertical spin precessions are equal and cancel.

Zhanibek Omarov's simulation

Running the EDM experiment

Potential systematic error: tilted E-field plates

Clock-wise and counter-clock-wise vertical spin precessions are equal, shown here with 1 compensating element.

Zhanibek Omarov's simulation

Beam-based alignment: What is possible?

BEAM BASED ALIGNMENT

Derivation of formula for orbit change

$$\Delta X(s) = \left(\frac{\Delta k \cdot x(\bar{s})l}{B\rho}\right) \left(\frac{1}{1 - k\frac{l\beta(\bar{s})}{2B\rho \tan \pi\nu}}\right) \frac{\sqrt{\beta(s)}\sqrt{\beta(\bar{s})}}{2\sin \pi\nu} \cos(\phi(s) - \phi(\bar{s}) - \pi\nu)$$

- Δx = orbit change
- s = measurement position
- \bar{s} = position of quadrupole
- ∆k = change of quadrupole strength
- x(s

 position of beam inside the quadrupole

- β = beta function
- ν = tune
- ϕ = betatron phase
- k =quadrupole strength
- / = length of quadrupole
- B_ρ = magnetic rigidity of the beam

BEAM BASED ALIGNMENT

Measurement

BEAM BASED ALIGNMENT

Results

	Optimal Position	in mm
Horizontal	-0.255 ± 0.028	-1.98 ± 0.01
Vertical	$2.329{\pm}0.011$	1.15±0.01

- Optimal position given in script setting
- The values in mm are the BPM 6 readings nearby

Beam-based alignment

• Quadrupole alignment resolution achieved at COSY: 10 microns

• Limited by the detector resolution (Rogowski coils)

• SQUID-based BPMs have much higher resolution: $10 \text{ nm}/\sqrt{\text{Hz}}$

What happens with lattice corrugation?

Relevant effect: keep CW and CCW beams at same place to 1-10 microns

What's needed

- Beam-based alignment ~1-10μm of quads (to eliminate geometrical phase issues)
- Clock-wise and counter-clock-wise stored beams need to be same within a SD of ~1-10 μm
- Need to hold high voltage for large surface area plates 5 8 MV/m for 3cm plates separation (determines ring size)
- Build one section, a 1/48 of the ring lattice to check compatibility & reliability.

Summary

- Great physics reach:
 - Matter-antimatter asymmetry of the universe, CPV
 - Largest sensitivity to New Physics, theta_QCD, DM/DE physics

- Hybrid ring design, eliminates main systematic error sources
- S-BPMs and high-precision simulation offer powerful tools in combating systematic errors. Beam-based alignment at micron level

• The proton EDM ring: 500m-800m.

Extra slides

Beam position monitor: SQUID array

Cylindrical Dewar: under fabrication

Total noise of (65) commercially available SQUID gradiometers at KRISS

SQUID-based BPMs, Korea

- The new design is to be delivered by summer
- ▶ Will be 2fT√Hz
- We will make wire tests in Korea
- Would be good to test here at COSY

Selcuk Haciomeroglu, IBS/CAPP

BMP Systems in the Storage Ring

