

Summary

R. B. Palmer, (BNL) Brookhaven National Lab

FNAL Mini-Workshop 5/19/11

- Summary
- To be done

Summary

- Average arc beam dimensions: $\sigma_y = 0.7 \text{ mm}$ $\sigma_x = 4 \text{ mm}$
- Open mid-plane magnets appear technically plausible
 - Design with AlBemet supports appear ok
 - Design with no downward forces on lower coils appear ok
- But their shielding is less effective than expected
 - approx 20% of beam power end up at 4 deg (cf needed suppression below 1%)
 - $-\operatorname{more}$ energy transported vertically than expected
 - this is seen even in the absence of tungsten absorbers
 - -it is not understood
- But thick tungsten pipe shield still looks promising
 - $-\operatorname{shield}$ can be elliptical thus reducing total mass
 - $-\,{\rm an}$ elliptical cos theta dipole could fit closely over the pipe
 - but design needs study

To be done

- Investigate mechanism of vertical energy flow
 - -MARS sim. of simple fully open dipole NOTE 1 (Kirk, Ding)
 - simulate above with particle tracking (Alexahin, McIntyre ?)
 - use backtracking to find source (Mokhov)
 - consider other geometries (Gupta)
- Study tungsten pipe option
 - define plausible elliptical shield dimensions NOTE 2 (Palmer)
 - -run MARS on above pipe geometries at 750 GeV (Mokhov)
 - preliminary elliptical cos theta dipole design (Tompkins)
- Plan Friday presentation in 2-3 weeks
- Plan Telluride session
- Consider SBIR phase I on elliptical pipe solution

NOTE 1 on simple open dipole

- Compare uniform By with real
- No tungsten rods, fully open
- Black holes left and right to see energy flow
- Initial muons with & without emittance
- \bullet Vary gap h=1.5, 3, 6 cm

NOTE 2 on elliptical pipe solution

- \bullet Set cryo wall power = 10 MW
- Beam power to electrons 2.5 MW
- Absorber with radial thicknesses to give symmetric penetration
- 1 cm gap between absorber and coil inside
- \bullet Beam pipe: \pm 1 cm vertical, by \pm 2.5 cm horizontal

THANKS JOHN

.