Summary

R. B. Palmer, (BNL)
Brookhaven National Lab

FNAL Mini-Workshop
5/19/11

- Summary
- To be done

Summary

- Average arc beam dimensions: $\sigma_{y}=0.7 \mathrm{~mm} \sigma_{x}=4 \mathrm{~mm}$
- Open mid-plane magnets appear technically plausible
- Design with AlBemet supports appear ok
- Design with no downward forces on lower coils appear ok
- But their shielding is less effective than expected
- approx 20% of beam power end up at 4 deg (cf needed suppression below 1\%)
- more energy transported vertically than expected
- this is seen even in the absence of tungsten absorbers
- it is not understood
- But thick tungsten pipe shield still looks promising
- shield can be elliptical thus reducing total mass
- an elliptical cos theta dipole could fit closely over the pipe
- but design needs study

To be done

- Investigate mechanism of vertical energy flow
- MARS sim. of simple fully open dipole NOTE 1 (Kirk, Ding)
- simulate above with particle tracking (Alexahin, McIntyre ?)
- use backtracking to find source (Mokhov)
- consider other geometries (Gupta)
- Study tungsten pipe option
- define plausible elliptical shield dimensions NOTE 2 (Palmer)
- run MARS on above pipe geometries at 750 GeV (Mokhov)
- preliminary elliptical cos theta dipole design (Tompkins)
- Plan Friday presentation in 2-3 weeks
- Plan Telluride session
- Consider SBIR phase I on elliptical pipe solution

NOTE 1 on simple open dipole

- Compare uniform By with real
- No tungsten rods, fully open
- Black holes left and right to see energy flow
- Initial muons with \& without emittance
- Vary gap h=1.5, 3, 6 cm

NOTE 2 on elliptical pipe solution

- Set cryo wall power $=10 \mathrm{MW}$
- Beam power to electrons 2.5 MW
- Absorber with radial thicknesses to give symmetric penetration
- 1 cm gap between absorber and coil inside
- Beam pipe: $\pm 1 \mathrm{~cm}$ vertical, by $\pm 2.5 \mathrm{~cm}$ horizontal

THANKS JOHN

