### **Heavy Flavor Physics with ATLAS**

Personal Perspective

Qipeng Hu (LLNL)

EF07 Meeting July 1st, 2020





# Heavy flavor program in ATLAS heavy ion group

Heavy flavor efforts in ATLAS heavy ion group:

- 2~3 analyzers for HF hadron
- 2~3 analyzers for HF jets
- + full support from the entire heavy ion group
- Small ATLAS high-lumi. pp B-physics group; stronger connection, heavy ion studies sometimes benefit HEP studies
- Strong ATLAS high-lumi. pp heavy flavor jet tagging group

ATLAS HF program has been focusing on the semi-leptonic decay muons recently

Significant efforts in HF jets with good progress



Small group trying to make big contribution

# Tools for studying HF hadrons

#### B/D meson



### non-prompt charmonium















### B/D decay muon





- Measure open charm and beauty at the same time
- Hard to extend to high  $p_T$  due to W decay background

5000 5100 5200 5300 5400 5500 5600 5700 5800

 $m(J/\psi K^{\pm})$  [MeV]

ATLAS Preliminary

Vs=13 TeV, L=3.2 fb

# ATLAS trigger system



#### Eur. Phys. J. C 77 (2017) 332 IDTR-2016-018 IDTR-2016-008

# ATLAS tracking system



PV resolution vs. beam spot in *pp* collisions





Impact parameter resolution in *pp* collisions



Tracking efficiency in Pb+Pb collisions

## ATLAS muon system



#### Precision chambers

- MDTs  $|\eta| < 2.5$
- CSCs  $2.0 < |\eta| < 2.7$

### Fast trigger chambers

- RPCs  $|\eta| < 1.05$  (barrel)
- TGCs  $1.05 < |\eta| < 2.4$  (end-cap)

For muon with  $p_T = 5$  GeV,  $\eta = 0$ :

- ID  $p_T$  resolution ~ 2%, dominated by multiple-scattering
- MS  $p_T$  resolution ~ 6%, dominated by energy loss fluctuation



ATLAS RPC acceptance ~ 80% overall

#### Phys. Lett. B 707 (2012) 438-458 Phys. Rev. Lett. 124 (2020) 082301 arXiv:2003.03565

### Selected results — muons

Systematics limited for yield measurements

Statistics limited for flow measurements, would be benefiting from more luminosity, especially in small systems

- HF muon in pp can be compared to NLO pQCD calculations, large contamination from W at high  $p_T$
- Charm/bottom discrimination using impact parameter allows probing charm and bottom at the same time
- Charm/bottom muon azimuthal anisotropy measured in pp and Pb+Pb with good precision, especially for bottom muon; same measurement in p+Pb would be valuable to constrain models
- HF muon can be used to tag jets, events, or correlation with other HF probes





## Selected results — non-prompt $\psi$

ATLAS-CONF-2019-047
Eur. Phys. J. C 78 (2018) 762
Eur. Phys. J. C 78 (2018) 784

Small systematics

Straight forward background subtraction method Usually limited by statistics, benefiting from more luminosity

- Full Run2 13 TeV pp data, 139 fb<sup>-1</sup>
- FONLL over-predicts the production rates at high  $p_T$ , likely from FF at high  $p_T$
- Non-prompt  $J/\psi R_{AA}$  and  $v_2$  measured in 2015 Pb+Pb data
- Could be extended to higher p<sub>T</sub> with full Run2 data to be compared to HF jets measurements







### Selected results — D meson

Based on MinBias or random triggers at low  $p_T$ No PID in ATALAS, heavily rely on tight cut on the decay topology

Usually systematic limited

- D\* cross section in 7 TeV pp data
- Can be compared to NLO pQCD calculations
- D\* and D<sup>0</sup> cross sections in 8.16 TeV p+Pb
- Comparable with FONLL w/o any nuclear effects

They show the detector feasibility for *D* meson analysis Large MinBias data (1/4 of full rate) collected in 2018 Pb+Pb runs, ideal for studying *D* mesons





# Heavy flavor jets

HF jets can be tagged by HF hadron probes or SV based multi-variable tagger

- D\* in jets obtained from 2010 7 TeV pp data
- Mis-modeling of production of small-z D\* in jets

- HF muons were used to tag HF jets based on relative  $p_T$  in pp collisions, can be implemented in heavy ion collisions
- Multi-variable based b-tagging is being testing/ optimizing for p+Pb and Pb+Pb data





### Detector upgrades



### Phase-II upgrade

ITK,  $-4 < \eta < 4$ 

Bigger, faster and better

Benefit correlation studies and improve momentum resolution for tracks/muons

~ 2027

### Phase-I upgrade

New small wheel

Largely reduces fake muon trigger rate at forward, allows access to lower  $p_T$  threshold muon triggers Available in Run3 (one side or both)



### Summary

- ATLAS has a small HF team, but it has full feasibilities for all HF studies
- Currently focusing on completing the series of HF muon analyses; also interested in HF jets and baryons
- Most results are currently limited by statistics, would benefit from more luminosity



