

Heavy Flavour Physics with ALICE in pp and PbPb collisions

Snowmass 2021 Energy Frontier (EF07 group)

Snow Mass 2021

<u>G.M. Innocenti (CERN) on behalf</u> of the ALICE Collaboration

Quark-gluon plasma (QGP) with heavy quarks

Quark-gluon plasma (QGP) with heavy quarks

Time (fm/c) Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

- $m_Q >> \Lambda_{QCD} \rightarrow early pQCD production$
- $m_Q >> T_{QGP} \rightarrow$ no thermal production
- charm/beauty content is conserved!

uction ction **erved!**

The ALICE experiment at CERN

 High precision tracking down to low p_T~150 MeV • Particle Identification with TPC dE/dx and Time-of-Flight

Energy loss in the medium Testing the medium properties and the mechanism of quark-QGP interaction

Energy loss of heavy quarks in the QGP

Energy loss of heavy quarks in the QGP

In-medium energy loss as a consequence of **radiative** and **collisional** processes.

00000000

0000

$$\frac{(AA)}{(AA)}$$

Energy loss of heavy quarks in the QGP

In-medium energy loss as a consequence of **radiative** and **collisional** processes.

00000000

0000

- Quantitative constraints on Eloss mechanisms and medium coefficients (e.g. charm diffusion Ds)
- First measurement of charm R_{AA} to 0 at LHC

Flavour dependence of Eloss in PbPb

- different Casimir factors for quarks vs gluons
- "dead" cone effect:

 \rightarrow E_{loss} (gluon) > E_{loss} (charm) > E_{loss} (beauty)

→ Hint of flavour dependence of in-medium energy loss

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

 Described well by calculations that include different E_{loss} for beauty and charm quarks

Collectivity in PbPb collisions: Testing the collective behaviour of the medium

Heavy-flavor "flow" in PbPb collisions

In the presence of a strongly interacting medium:

 \rightarrow Large v₂ at low p_T suggests collective expansion of the medium \rightarrow Are heavy quarks sensitive to the medium expansion?

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

azimuthal particle momentum anisotropy

11

Charm and beauty "flow" in AA collisions

New v₃ measurements recently presented!

HF particle ratios: probing hadronisation mechanisms

In-medium hadronisation for charmed hadrons

Λ_c/D^o (baryon/meson) ratio is also expected to increase in the presence of charm recombination in the QGP

\rightarrow Hadronisation is modified already in pp collisions?

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

ALI-PREL-323761

 Moderate enhancement from pp to Pb-Pb at intermediate p_T within uncertainties

Modification of hadronisation in pp collisions?

ALI-PREL-336418

- Λ_c/D^0 shows an increase from low multiplicity pp to high multiplicity pp
- large increase from e⁺e⁻ to pp

Modification of hadronisation in pp collisions?

ALI-PREL-336442

 \rightarrow Significant modification of the hadronisation process already in pp collisions driven by multiplicity \rightarrow Alternative mechanisms without hot medium can explain the observed enhancement?

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

• Pythia tunes including colour "junction" formation + MPI can describe the measurements

New experimental probes for HF studies

Stronger constraints with heavier baryons

First studies being carried out in **pp collisions** with Σ_c^0 and Ξ_c^0

• Indication of large enhancement w.r.t e⁺e⁻ fragmentation ratios for $\Sigma_c^{0,+,++}$ and $\Xi_c^{0,+,+}$ \rightarrow More constraints on the microscopic description of the enhancement

 \rightarrow New insights into PbPb system with Run3 measurements!

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

 $\Xi_{c}^{0,+}/D^{0}$

HF-chemistry in-jet for hadronisation studies

HF-tagged jet provide a reference for the energy and direction of the initial charm quark stronger constraints of the hadronisation process!

→ More differential studies possible in pp and PbPb in Run3/Run4

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

<u>First measurement of Λ_c fragmentation at LHC</u>

ALI-PREL-337688

Substructure of charm jets in pp

D⁰-tagged jets with 15 < p^{Jet}_T < 30 GeV/c (track-based) → testing QCD in an unexplored kinematic region

<u>JHEP 05 (2014) 146</u>

Number of splittings passing Soft-Dropped n_{SD}:

• sub-leading prong carries > 10% of splitting p_T

Substructure of charm jet in pp

D⁰-tagged jets with $15 < p^{\text{Jet}} < 30 \text{ GeV/c}$ (track-based) \rightarrow testing QCD in an unexplored kinematic region

<u>JHEP 05 (2014) 146</u>

Number of Soft-Dropped splittings n_{SD}:

• sub-leading prong carries > 10% of splitting p_T

→ Consistent with harder fragmentation of HF jets (quark) w.r.t. inclusive jets (gluon) → New technique for studying quark/gluon jet quenching in PbPb collisions

- described by PYTHIA

(Some) ALICE plans for Run3/4

HF in ALICE during Run3/Run4

<u>J. of Phys. G: Vol. 41, Num. 8</u>

ALICE in Run3:

- improved primary and secondary vertex resolution with new ITS (ITS2)
- Up to 50kHz of interaction rate with new TPC readout
- \rightarrow 100x more statistics compared to Run1+2

Run3/4: ALICE in large systems

Study of quenching, hadronisation and collectivity in central PbPb collisions will be the core ALICE activities:

- traditional observables (R_{AA} , v_2 , particle ratios) for charm and beauty down to very low p_T
- HF-jet chemistry and HF-jet substructure from low to intermediate/high p_T

ALI-SIMUL-348369

Run3/4: from low to high multiplicity pp/pPb

Expand the successful pp program to study pQCD and hadronisation mechanisms in small systems :

- low multiplicities are probably as interesting as high multiplicities!
- heavier baryonic states, more differential analyses vs multiplicities and event shapes, HF-jets

A completely new detector at point 2: low-material, high-rate, all-Si Could be installed in LS4 (2031)

Extremely good pointing resolution 10 layers for tracking Forward coverage up to $\eta \approx 4$

High-resolution tracking à la ITS3

Time-of-flight layer(s) for particle identification: electrons, hadrons

> Shower Pixel Detector: electron ID at higher momentum

Thank you for your attention!

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

Beyond Run4!

Shower Pixel Detector (SPD) Time Of Right (TOF) insert-able conversion layer ~400cm

> Additional capabilities for photons via conversions

> > M. Van Leeuwen, LHCP2020

arXiv1902.01211

BACKUP

D_s/D^o as a test for recombination

 D_s/D^0 to be enhanced in Pb-Pb vs pp in presence of charm recombination and strangeness enhancement

\rightarrow Relevant contribution of coalescence in charm hadronisation in Pb-Pb

Modification of hadronisation in pp collisions?

ALI-PREL-336442

• Standard Pythia calculation (tuned on e+e-) do not describe the observed ratios

Charm and beauty "flow" in PbPb collisions

arXiv.2005.11130

LHCP

FINAL

v₂ significantly > 0 for HF muons ← c
v₂ smaller but still > 0 for HF muons ← b

→ Both charm and beauty quarks take part in the collective expansion of the medium $\rightarrow v_2(\Upsilon)$ consistent with zero! Mass effect?

D meson R_{AA} : comparison to models

Centrality 0-10%

- Strong discrimination power at 0-1 GeV/c
- TAMU (Langevin) well describes the data from lacksquarelow to high p_T

• In semi- peripheral events, most of the models show a good agreement with the data

D meson R_{AA} : comparison to models

RAA of D_s vs D⁰ in central and peripheral Pb-Pb

ALI-PREL-320222

D meson R_{AA} : comparison to models

BAMPS el. + rad., BAMPS el.:

- (shadowing)

TAMU:

POWLANG:

- more than in TAMU
- energy loss

Catania:

LIDO:

MC@sHQ+EPOS2:

overestimate the low p_T region probably because of absence of PDF modification in nuclei

In presence of radiative energy loss the Pb-Pb is pushed more at lower momenta and therefore the R_{AA} goes higher

• Good description of the low p_T region including very low p_T intervals thanks to EPS09 + shadowing. • FONLL as production mechanisms helps having a proper initial p_T shape • Description at high p_T suffers from missing radiative component

• The R_{AA} shape is shifted at high p_T . Effect of different HQ production mechanisms? • The effect of PDF modification is visible at low momenta where the RAA decreases significantly,

• At high p_T . The R_{AA} is smaller than data, which is surprising given that there is no radiative

• Results similar to TAMU, but with a shift of the p_T spectrum (or R_{AA}) at lower p_T . Effects of the different recombination?

Results similar to TAMU. Not available for the very low p_T region

• Pretty good agreement at high pT. Underestimate the low p_T region

non-prompt D⁰ R_{AA} : comparison to CMS b $\rightarrow J/\psi$

ALI-PREL-332605

RAA (prompt D⁰) / RAA (non-prompt D⁰)

Overview of theoretical calculations

Model	HQ production	Medium modelling	Quark-medium interaction	HQ hadronisatio n	Tuning of medium coupling	Refere
BAMPS el.	MC@NL0 No PDF shadowing	3d+1 expansion parton cascade	Transport with Boltzmann rad. + coll.	Frag.	RHIC (then scaled by dN/ d η	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1408.2</u>
TAMU	FONLL EPS09 (NLO) PDF shadowing	2d+1 expansion parton cascade	Transport with Langevin coll. only Diffusion in hadronic phase Improved space-mom correlation	Frag. + Rec.	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1401.3</u>
POWLANG	POWLANG EPS09 (NLO) PDF shadowing	2d+1 expansion with viscous fluido- dyn evolution	Transport with Langevin coll. only	Frag. + Rec.	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1410.6</u>
Catania	FONLL EPS09 (NLO) PDF shadowing	2d+1 expansion parton cascade	Transport with Langevin coll. only	Frag. + Rec. (different from TAMU?)	Assume 1-QCD U potential	<u>https</u> <u>arxiv.c</u> <u>pd</u> <u>1712.00</u>
LIDO	FONLL EPS09 (NLO) PDF shadowing	2d+1 rel. fluido- dynamics	Transport with Langevin + empirical transport coefficients to capture the non-perturbative part. (Boltzmann)	Frag. + Rec.	Coefficients fixed with Bayesian analysis to LHC D and B results	<u>https</u> <u>arxiv.c</u> <u>pd</u> <u>1806.08</u>

Overview of theoretical calculations

Model	HQ production	Medium modelling	Quark-medium interaction	HQ hadronisation	Tuning of medium coupling	Refere
PHSD	Pythia + string melting		Microscopic covariant transport Dynamical Quasiparticle Model	Local covariant transition rates		<u>https</u> <u>arxiv.c</u> <u>pdf</u> <u>1908.00</u>
MC@ sHQ+ EPOS2	FONLL EPS09 (NLO) PDF shadowing	3d+1 expansion (EPOS model)	Transport with Boltzmann coll. (+rad when mentioned)	Frag. + Rec.	QGP transport coefficients fixed at LHC, adapted for RHIC	<u>https</u> <u>arxiv.(</u> <u>abs</u> <u>1305.(</u>
WHDG	FONLL no PDF shadowing	Glauber model nuclear overlap No fluido-dyn evol.	rad. + coll.	Frag.	RHIC (then scaled by dN/d η	
Vitev et al.	Non-zero mass VFNS no PDF shadowing	Glauber model nuclear overlap Ideal fluido-dyn Bjorken expansion	rad. + coll. In medium meson dissociation	Frag.	RHIC (then scaled by dN/d η	
CUJET3		Semi quark gluon monopole plasma	rad.	Frag.	Model parameters tuned on light flavour data	<u>https</u> <u>arxiv.c</u> <u>abs</u> <u>1704.0</u>

Comparison to Λ_c/D^0 ratio from STAR

ALI-PREL-323761

arXiv 1910.14628v1

D_s/D^o in pp collisions vs multiplicity

Can we observe D_s/D^0 enhancement in high multiplicity collisions?

 \rightarrow D_s/D^o shows a hint of enhancement from low to high pp multiplicities

Baryon/meson zoo

Λ_c/D^o vs multiplicity in pp, pPb, PbPb

D_s/D^o vs multiplicity in pp, pPb, PbPb

ALI-PREL-336402

D_s/D^o vs multiplicity in pp, pPb, PbPb

$\Lambda_{c} \leftarrow \Sigma_{c}^{0,+,+++}$ and $\Sigma_{c}^{0,+,+++}$ in pp collisions

Σ_c enhancement and di-quark states

 Ω_{ccc}^{++}

• Only way to produce Σ_c states in ordinary string fragmentation is via the production of dd or uu di quark states which must be in state spin-1 and combine with c quark

• With junctions recombination, there is no penalty for having two legs with

Overview of color reconnection in PYTHIA

- partons created in different MPIs do not interact
- Color reconnection allowed between partons from different MPIs to minimize string length
- As implemented in Monash ColorReconnection:mode =0

- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- Minimization of the string length over all possible configurations
- Include CR with MPIs and with beam remnants
- ColorReconnection:mode = 1

JHEP 08 (2015) 003, arXiv: 1505.01681v1

PYTHIA color reconnection parameters

Parameter

StringPT:sigma StringZ:aLund StringZ:bLund StringFlav:probQQtoQ StringFlav:ProbStoUD

StringFlav:probQQ1toQQ0join

MultiPartonInteractions:pT0Ref BeamRemnants:remnantMode BeamRemnants:saturation ColourReconnection:mode ColourReconnection:allowDoubleJunRem ColourReconnection:m0 ColourReconnection: allowJunctions ColourReconnection:junctionCorrection ColourReconnection:timeDilationMode ColourReconnection:timeDilationPar

Monash	Mode 0	Mode 2	Mode 3
= 0.335	= 0.335	= 0.335	= 0.335
= 0.68	= 0.36	= 0.36	= 0.36
= 0.98	= 0.56	= 0.56	= 0.56
= 0.081	= 0.078	= 0.078	= 0.078
= 0.217	= 0.2	= 0.2	= 0.2
= 0.5,	= 0.0275,	= 0.0275,	= 0.0275,
0.7,	0.0275,	0.0275,	0.0275,
0.9,	0.0275,	0.0275,	0.0275,
1.0	0.0275	0.0275	0.0275
= 2.28	= 2.12	= 2.15	= 2.05
= 0	= 1	= 1	= 1
-	= 5	= 5	= 5
= 0	= 1	= 1	= 1
= on	= off	= off	= off
-	= 2.9	= 0.3	= 0.3
-	= on	= on	= on
-	= 1.43	= 1.20	= 1.15
-	= 0	= 2	= 3
-	-	= 0.18	= 0.073

JHEP 08 (2015) 003, arXiv:1505.01681v1

Heavy Flavour Physics in ALICE, SnowMass 2021, 29/06/2020

Dead cone: suppression of small angle radiation for heavy quarks.

→ Fundamental QCD effect never observed directly

Remove soft radiation at large angles to isolate largest hard structures in the jets:

 \rightarrow study the coherent vs incoherent behaviour of jets inside the medium

"Soft drop":

Iteratively test the soft drop condition at each splitting.

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

remove softer subjet if soft drop is not satisfied. Can be tuned for sensitivity to:

- large p_T unbalance ($p_{T2} < p_{T1}$)
- large angle between subjects

Grooming techniques

Considering the two main sub-jets **j**₁, **j**₂

Momentum asymmetry:

 $Z_{g} =$ **р**т,2 **+р**т,1

• Radial distance **R**_q

• Groomed mass M_g

B. Audurier Heavier charmed/beauty baryons in pp collisions

- Indication of large enhancement w.r.t e+efragmentation ratios for $\Sigma_c^{0,+,++}$ and $\Xi_c^{0,+}$
- Modification of baryon/meson ratio in the beauty sector
- \rightarrow Stronger constraints on the microscopic mechanisms responsible for baryon/meson modifications in pp collisions

Dead cone: suppression of small angle radiation for heavy quarks. → Fundamental QCD effect never observed at colliders directly

> <u>J. Phys. G17, 1602–1604 (1991).</u> Phys. Rev. D 99, 074027 (2019)

 $\theta_c < M_q/E_q$ suppressed

For both inclusive and charm jets:

- Iterative declustering with C/A access to each splitting
- Fill a Lund plane with θ , k_T of each splitting
- project in θ

Dead cone: suppression of small angle radiation for heavy quarks. → Fundamental QCD effect never observed at colliders directly

For both inclusive and charm jets:

- Iterative declustering with C/A access to each splitting
- Fill a Lund plane with θ , k_T of each splitting
- project in θ

 \rightarrow Evidence of suppression of small angle radiation for D⁰-tagged jets "dead cone effect"

Dead cone: suppression of small angle radiation for heavy quarks. → Fundamental QCD effect never observed at colliders directly

<u>J. Phys. G17, 1602–1604 (1991).</u>

ratio of D⁰-tagged / inclusive jet distributions

