HL/HE-LHC top physics results

Clement Helsens, CERN-EP

EF03 snowmass 2021 meeting, June 25th 2020

Pre-introduction

Standard Model works beautifully at the LHC: no direct evidence of new physics

- Key questions remain unanswered
 - What gives rise to the matter-antimatter asymmetry in the universe? What is dark matter made of? What is dark energy? Why is gravity so weak?
 - Small Higgs mass requires large cancellations if SM is valid to Planck scale
 - Strong motivation for new physics at the TeV scale (new particles, interactions, dimensions)

The answers may still lie at the TeV scale...

- HL-LHC will deliver 3ab⁻¹ @14 TeV
 - Study the Higgs boson in detail -> BSM physics could manifest itself in deviations from SM predictions
 - Measure rare SM processes -> BSM could have a large effect
 - Search for new particles/phenomena at the TeV scale

HE-LHC might double the collision energy to 27 TeV

- Higher mass reach for new physics deeper exploration of TeV scale
 - But might not be enough, 100, 200,300 TeV, more?

Introduction

The physics potential of the HL/HE-LHC has been studied in detail for the European Strategy, most recently in the context of the Workshop on "The physics of HL-LHC, and perspectives on HE-LHC" (2017-2018)

Prospects are presented in all areas:

- 5 Working Groups: SM, Higgs, BSM, Flavour, Heavy Ion
- ATLAS, CMS, LHCb, ALICE experimentalist and theorists worked to enrich and consolidate the HL physics program
 - precision, exploration potential and scope
- prospects for a possible HE-LHC are also studied, but sometimes with less details

Final product

WG Reports

- WG1 SM and top http://arxiv.org/abs/arXiv:1902.04070 (219 pages)
- WG2 Higgs http://arxiv.org/abs/arXiv:1902.00134 (364 pages)
- WG3 BSM http://arxiv.org/abs/arXiv:1812.07831 (279 pages)
- WG4 Flavour http://arxiv.org/abs/arXiv:1812.07638 (292 pages)
- WG5 Heavy lons http://arxiv.org/abs/arXiv:1812.06772 (207 pages)
- "Volume 2" (collection of ATLAS and CMS public notes): https://arxiv.org/abs/1902.10229 (1369 pages)

Executive summaries, submission to the European Strategy

- HL-LHC https://indico.cern.ch/event/765096/contributions/3295995/
- HE-LHC https://indico.cern.ch/event/765096/contributions/3296016/

🛏 1361 pages

In the experiments, work mostly done by a (very)limited number of persons

HL/HE-LHC YR 25/06/20

5

The running plan

Scenarios for projections

HL-LHC 14 TeV, 200 PU ($5x10^{34}$ cm⁻²s⁻¹), 3 ab⁻¹ or even 4 ab⁻¹ in the "ultimate" scenario HE-LHC 27 TeV, 15 ab⁻¹

Assumptions and overall approach

Common assumptions (for ATLAS and CMS)

• $3ab^{-1}$ @ 14 TeV for HL-LHC with <µ>=200, 15 ab^{-1} @ 27 TeV for HE-LHC much larger pile-up of 500

Different approaches have been used by experiments and in theoretical prospects

- Detailed-simulations, used to assess the performance of reconstructed objects
- Extrapolations of existing results using simple scale factors on individual processes
- Fast-simulations, e.g. using DELPHES and common HE-LHC card
- Parametric-simulations, using particle-level definitions for the main objects and taking into account the pileup conditions: effects of an upgraded detector are taken into account by applying smearing functions and parameterizations.
- Systematic uncertainties are based on existing data analyses and estimated using common guidelines for projecting the expected improvements foreseen thanks to large dataset and upgraded detectors
 - Intrinsic statistical uncertainty is reduced by a factor 1/VL
 - Theoretical uncertainties are halved or divided by 4; PDF reduced up to 20-50%
 - Detector-related uncertainties (JES, JER, b-tagging, $e/g/\mu/t$ ID) are ~ halved
 - Limited Monte-Carlo statistic considered as irrelevant for this exercise

PDF from double differential X-Sec

- Uncertainty on differential top x-sec O(5%)
- Significant impact on high x gluon PDF
- Complemented with forward tops:
 - 300 fb⁻¹ LHCb data probe high-x PDFs with partially reconstructed top quarks
 - quark PDFs: use differential charge asymmetry vs. lepton η

Top FCNC

<u>Comprehensive studies by ATLAS (tZq) and CMS (tqg, tqy)</u>

- Dedicated signal and background samples simulated
- Follow the Run-II strategies
- CMS uses BNN on kinematic input (tqg), photon p_T and energy (tq γ)
- ATLAS uses χ^2 constructed under FCNC hypothesis (tZq)
- Improvement typically one order of magnitude (lumi increases by 100 from 30 to 3000 fb⁻¹ so kind of expected but important to check the detector performances)

Top FCNC

 3 ab^{-1} , 14 TeV Run II $15ab^{-1}$, 27 TeV B limit at 95%C.L. 5.6×10^{-7} 3.8×10^{-6} 2x10⁻⁵ $t \rightarrow gu$ 32.1×10^{-6} 19.1×10^{-7} 4x10⁻⁴ $t \rightarrow gc$ $2.4 - 5.8 \times 10^{-5}$ 1.7-2.4x10⁻⁴ $t \rightarrow Zq$ 8.6×10^{-6} 1.3x10⁻⁴ $t \rightarrow \gamma u$ 7.4×10^{-5} $t \rightarrow \gamma c$ 2.0x10⁻³ 10^{-4} $t \rightarrow Hq$ 1.1×10^{-3}

25/06/20

4 top production

- 4 tops: complete NLO cross section known and EWK contributions not small (10%)
- 2 same charge leptons or 3 lepton channel,
 ≥ 6 jet, ≥ 3 b-tagged jets
- Uncertainty in fake/non-prompt is leading systematic
- total uncertainty in measured x-sec is 11% (9% without systematics)
- Expect evidence for tttt with 300 fb⁻¹ at 14 TeV
- Good sensitivity to top Yukawa coupling modification

 $\begin{aligned} \text{HL} - \text{LHC} \left(\sqrt{s} = 14 \text{ TeV} \right) &: \quad \sigma(t\bar{t}t\bar{t}) = 13.14 - 2.01\kappa_t^2 + 1.52\kappa_t^4 \text{ [fb]} \\ \text{HE} - \text{LHC} \left(\sqrt{s} = 27 \text{ TeV} \right) &: \quad \sigma(t\bar{t}t\bar{t}) = 115.10 - 15.57\kappa_t^2 + 11.73\kappa_t^4 \text{ [fb]} \end{aligned}$

25/06/20 HL/HE-LHC YR

Channel

tt+Z

Scaled from 13TeV to 14TeV

CMS Phase-2 Simulation Preliminary 3 ab⁻¹(14 TeV)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

ttZ

tWZ tty

ttZ (non-info)

 $\cos(\theta_{7}^{*})$

1600 Events

5 1400 -

Number Number

1000

800

600

400

200

0.5

WS / MSB

tZa

Wilson coefficient	$68 \% \mathrm{CL} \left(\Lambda/\mathrm{TeV} \right)^2$	95 % CL $\left(\Lambda/\text{TeV}\right)^2$
$C_{\phi t}$	[-1.65, 3.37]	[-2.89, 6.76]
$C_{\phi Q}$	[-1.35, 2.92]	[-2.33, 6.69]
C_{tZ}	[-0.37, 0.36]	[-0.52, 0.51]
$\mathrm{C}_{tZ}^{\mathrm{[Im]}}$	[-0.38, 0.36]	[-0.54, 0.51]

Top mass

• "Simple" concept:

- pick out jets from top
- pair up the right jets to each top
- calculate mass
- challenges (a selection)
 - efficient b tagging (combinatorics)
 - moderate pT triggers
 - systematic related to the 'MC mass' to a well defined parameter in a ren. scheme to 100 MeV
 - precision JES & ETmiss, lepton E scale

0.17 GeV ~ 0.1%
dominated by JES

Top mass

HL/HE-LHC YR 25/06/20

14

Top-W coupling (TH but uses ATLAS data)

HL-LHC	$g_{ m R}$	$g_{ m L}$	$V_{ m R}$
Allowed Region (Re)	[-0.05, 0.02]	[-0.17, 0.19]	[-0.28, 0.32]
Allowed Region (Im)	[-0.11, 0.10]	[-0.19, 0.18]	[-0.30, 0.30]

- W boson helicity measurements, asymmetries and single top production are able to constrain potential anomalous Wtb couplings
- comprehensive list of measurements
 - W boson helicity, AFB, Single top x-sec
- Extrapolate to 3ab⁻¹ and include scaled results
 - Reconstruction level uncertainties were kept (btagging was divided by 2)

25/06/20 HL/HE-LHC YR

16

V_{cb} in top decays (TH but uses ATLAS b-tag)

- Showed that
 - a measurement of $|V_{cb}|$ at better than the 10% level is possible with the full run II dataset
- Using improved tagging uncertainties and HL-LHC luminosities, it may be possible to reduce |V_{cb}| uncertainty towards 3% or even below 2%

Conclusions 1/2

The 1 year Workshop in preparation for the European Strategy has delivered five documents on SM, Higgs, BSM, Flavor physics and Heavy lons for a total of 1361 pages plus two short summaries for the ESU

Very partial overview given

- Impressive potential in the higgs sector for properties and BSM prospects
- Impressive expectations for di-higgs production using bb+X modes
- Possibilities to discover new particles, i.e. in the EWK SUSY sector, and/or at high mass
- Precision SM measurements allow reduction of uncertainties and provide indirect probe to searches for NP

Conclusions 2/2

- We have been spoiled by the immense success of the LHC machine and CMS and ATLAS results in the recent past.
- The HL-LHC is a high value flagship program for the HEP scientific community: we will redefine yet again the knowledge of precision physics at a proton collider.
- Performing the careful studies and projections for TDRs and the Yellow Report we have realized:
 - we have designed amazing detectors that will be able to fully mitigate the 200PU
 - we can expand the knowledge of the SM with improved precision and the observation of new processes that become accessible
 - we can expand the search for BSM physics with tools that allow to probe new and unusual processes
- HE-LHC might bring in the extra energy and open up the possibility for direct production of new particles.
- As a reminder, once the real data become available experiments have always done much better than any projection. Looking forward an exciting program!

The European Strategy Update

- <u>Strategy Symposium in Granada 13-16 May</u>
- Recommendations originally planned to be made public during the special CERN council in May, but was delayed due to the sanitary crisis caused by COVID-19
- Last Friday, the recommendations were released
 - Very relevant for top physics

FCC scope

- FCC: 100km tunnel in the Geneva area
- FCC-hh:
 - Vs =100TeV -> Needs 16T magnets
 - Heavy resonances up to m ≈ 40 TeV
 - Stops up to m ≈ 10TeV
 - Higgs self-coupling, rare decays
 - EWK, Top physics in extreme regimes
- FCC-ee
 - √s = 90 to 365GeV
 - 20 to 50 fold improvements in many SM parameters
 - Higgs width, DM as invisible decay of H
 - BSM through loops
 - Explore energy scales to ~10TeV scale

LHC

Jura

Top physics at FCC-ee

first time top quark will be seen at lepton collider giving sensitivity to production modes that are currently unavailable

- Running conditions
 - Dedicated run of ~1.5 ab⁻¹ at and around tt threshold @350GeV
 - 0.2 ab⁻¹ for measurement threshold scan
 - 365GeV runs for top coupling measurement (ttZ,ttγ,ttH)
- Statistics
 - Cross-section at threshold ~0.55pb
 - With 0.2+1.5ab⁻¹ (6 years) ~ 10⁶ high purity top-pair events
- Top measurements
 - Precise measurements, coupled with precise Theo. Calc. -> excellent discovery potential
 - Portal to new physics effects at high scales
 - Clean environment and large statistics at FCC-ee will allow to probe:
 - Anomalous couplings
 - Indirect effects from loop contributions
 - Suppressed and rare decays (from very clean final states)

Top at threshold scan

- Cross section at threshold
 - Highly sensitive to quark mass, width, α_s and Y_t
 - Can be calculated with high precision
- Measurement of the top pair prod. cross section
 - Different energy points in the threshold region
 - Other observables, top momentum, A_{FB} may increase sensitivity
- Default assumption
 - Each energy point with equal int. luminosity
 - Optimal way to distribute the integrated luminosity depends on the variables

HL/HE-LHC YR 25/06/20

HL/HE-LHC YR 25/06/20

23

Top production hh

- At 100TeV highly dominated by gluon-gluon fusion
- Top pair cross section
 - 45 times larger than @13TeV
- With 20ab⁻¹
 - ~10¹³ top pairs -> ~10¹³ W's / b's
 - ~10¹² tau (rare decays, CPV)
- For m_{tt}>15TeV
 - qq production dominates
 - ~20k events with 20 ab⁻¹
 - Interesting for new physics at high m_{tt}
- 4-top cross-section increase by ~1000

The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Both FCC-ee and FCC-hh have outstanding physics cases We are ready to move to the next step, as soon as possible

FCC C(Should) Start Now

