

PROBING NEUTRINO INTERACTIONS WITH COSMOLOGICAL OBSERVATIONS

MASSIMILIANO LATTANZI

INFN, sezione di Ferrara

HEP Division Seminar

Argonne National Laboratory

July 15th, 2020

OUTLINE OF THE TALK

- INTRODUCTION
- Non-standard Interactions in the active NEUTRINO SECTOR
- Non-standard Interactions in the sterile Neutrino sector

OUTLINE OF THE TALK

- INTRODUCTION
- Non-standard Interactions in the active NEUTRINO SECTOR
- Non-standard Interactions in the sterile Neutrino sector

THE COSMIC NEUTRINO BACKGROUND

The presence of a background of relic neutrinos (CvB) is a basic prediction of the standard cosmological model

- Neutrinos are kept in thermal equilibrium with the cosmological plasma by weak interactions until $T \sim I \text{ MeV} (z \sim 10^{10})$;
- Below T ~ I MeV, neutrino free stream keeping an equilibrium spectrum:

$$f_
u(p) = rac{1}{\mathrm{e}^{p/T} + 1}$$

- Today $T_v = 1.9 \text{ K}$ and $n_v = 113 \text{ part/cm}^3 \text{ per species}$
- Free parameters: the three masses (but cosmological evolution mostly depends on their sum)

THE COSMIC NEUTRINO BACKGROUND

Weak cross section:

$$\sigma \simeq G_F^2 T^2$$

Weak interaction rate

$$\Gamma = n \langle \sigma v \rangle \sim G_F^2 T^5$$

Expansion rate

$$H\simeq rac{T^2}{m_{
m p}}$$

Interactions become ineffective when T=T_d such that

$$1 \simeq rac{\Gamma}{H} \sim G_F^2 T^3 m_{
m p} \sim \left(rac{T}{
m MeV}
ight)^3$$

Given this, we can use conservation laws to compute the temperature, density, etc... of neutrinos at a given time.

THE COSMIC NEUTRINO BACKGROUND

The Λ CDM(+ ν) model assumes:

- only weak and gravitational interactions for v's;
- no sterile neutrinos or other light relics;
- perfect lepton symmetry (zero chemical potential);
- no entropy generation after neutrino decoupling beyond e⁺e⁻ annihilation;
- neutrinos are stable;
- in general, there are no interactions that could lead to neutrino scattering/annihilation/decay

OBSERVING THE CNUB

Due to non-instantaneous decoupling, the standard expectation is $N_{eff} = 3.046$ (updated calculation gives $N_{eff} = 3.045$; see de Salas & Pastor 2016)

OBSERVING THE CNUB

Due to non-instantaneous decoupling, the standard expectation is $N_{eff} = 3.046$ (updated calculation gives $N_{eff} = 3.045$; see de Salas & Pastor 2016)

WHY V NON-STANDARD INTERACTIONS?

- Why not? nuNSI are grounded in particle physics models and might be related to neutrino mass generation (e.g. Majoron models)
- Why not (II)? Relic v's are extremely difficult to detect directly. It is a good idea to test their properties.
- Might help in explaining observed tensions....

OUTLINE OF THE TALK

- Introduction
- Non-standard Interactions in the active Neutrino sector
- Non-standard Interactions in the sterile NEUTRINO SECTOR

COSMOLOGICAL PHENOMENOLOGY OF VNSI

Collisional processes affect the perturbation evolution of relic neutrinos

Two limiting regimes:

Light mediator ($M_{\phi} \ll T$)

Heavy mediator ($M_{\phi} >> T$)

$$\langle \sigma v
angle \sim rac{g^4}{E^2} \sim rac{g^4}{T^2}$$

$$\langle \sigma v
angle \sim rac{g^4}{M_{m{\phi}}^4} {\it E}^2 \sim G_{m{\phi}}^2 {\it T}^2$$
 $G_{m{\phi}} \equiv rac{g}{M}$

COSMO PHENOMENOLOGY OF VNSI: LIGHT MEDIATOR

Collisional processes can suppress stress and affect the perturbation evolution of cosmological neutrinos

In the UR limit:
$$\sigma \sim \frac{g^4}{s} \sim \frac{g^4}{T^2}$$

$$\sigma \simeq rac{\mathsf{I}}{\mathsf{32}\pi}rac{\mathsf{g}^{\mathsf{4}}}{\mathsf{s}}$$

$$\Gamma_{\nu\nu} = \langle \sigma_{\mathsf{bin}} \mathsf{v} \rangle \mathsf{n}_{\mathsf{eq}} \propto \mathsf{g}^{\mathsf{4}} \mathsf{T} \,,$$

H grows as T^2 (RD) and $T^{3/2}$ (MD) so the ratio Γ/H increases with time. Neutrinos recouple at low temperatures! In the following I write generically

$$\Gamma_{\nu\nu} = (\dots) \times \frac{g^4}{T_{\nu}^2} \times \frac{3\zeta(3)}{2\pi^2} T_{\nu}^3 = g_{\text{eff}}^4 \times \frac{3\zeta(3)}{2\pi^2} T_{\nu}$$

COSMO PHENOMENOLOGY OF VNSI: LIGHT MEDIATOR

$$rac{\Gamma}{H} \sim rac{g^4 M_{
m Pl}}{T}$$

$$g_{\rm eff} = 1.5 \times 10^{-7}$$

$$g_{eff} = 2.7 \times 10^{-7}$$

$$g_{\rm eff} = 5 \times 10^{-7}$$

Recoupling happens earlier for larger ouplings

COSMO PHENOMENOLOGY OF VNSI: HEAVY MEDIATOR

$$rac{\Gamma}{H} \sim G_{\phi}^2 T^3 M_{
m Pl}$$

$$G_{\phi} << G_F$$

$$G_{\phi} = (10 \text{ GeV})^{-2}$$

$$G_{\phi} = (I \text{ GeV})^{-2}$$

$$G_{\phi} = (0.1 \text{ GeV})^{-2}$$

Decoupling happens later for larger ouplings

COSMOLOGICAL PHENOMENOLOGY OF VNSI

Neutrino free-streaming affects photon perturbations in two ways (Bashinsky & Seljak 2004):

- by "pulling" ahead photon-baryon wavefronts: this imprints a phase shift in the CMB power spectra
- by making gravitational potentials decay away more rapidly: this suppresses the amplitude of the spectrum

Both effects happen at the time the perturbation enters the horizon, and are relevant during the RD era

VNSI AND CMB ANISOTROPIES: LIGHT MEDIATOR

Scales entering the horizon between recoupling and equality are affected i.e. "larger" scales (up to the scale of matter radiation equality)

Overall boost of the spectrum amplitude + phase shift

Data points are from Planck 2015

(Forastieri, ML, Natoli, 2015, 2019; see also Archidiadono, Hannestad 2013; Cyr-Racine, Sigurdson 2013)

VNSI AND CMB ANISOTROPIES: LIGHT MEDIATOR

Scales entering the horizon between recoupling and equality are affected i.e. "larger" scales (up to the scale of matter radiation equality)

Overall boost of the spectrum amplitude + phase shift

Data points are from Planck 2015

(Forastieri, ML, Natoli, 2015, 2019; see also Archidiadono, Hannestad 2013; Cyr-Racine, Sigurdson 2013)

VNSI AND CMB ANISOTROPIES: LIGHT MEDIATOR

Data points are from Planck 2015

VNSI AND PLANCK 2015: LIGHT MEDIATOR

Limits are 95% CL

Forastieri, ML, Natoli, PRD 2019

PROBES OF VNSI

cosmology $g_{ij} < 2 \times 10^{-7}$ (mass basis)

Supernovae: $g_{i'j'} < 3 \times 10^{-7}$ or $g_{i'j'} > 2 \times 10^{-5}$ (medium basis)

$$\mathcal{L} \supset h_{ij} \bar{
u}_i
u_j \phi + g_{ij} \bar{
u}_i \gamma_5
u_j \phi \,,$$

 $0v2\beta$ decay $g_{ee} < (0.8 \div 1.6) \times 10^{-5}$ (flavor basis)

VNSI AND CMB ANISOTROPIES: HEAVY MEDIATOR

Kreisch, Cyr Racine & Dore 2019 See also Cyr-Racine & Sigurdson 2014; Lancaster, Cyr-Racine, Knox & Pan 2017; Oldengott, Tram, Rampf & Wong 2017

Scales entering the horizon before decoupling are affected i.e. smaller scales are more affected

VNSI AND CMB ANISOTROPIES: HEAVY MEDIATOR

Kreisch, Cyr Racine & Dore 2019 See also Cyr-Racine & Sigurdson 2014; Lancaster, Cyr-Racine, Knox & Pan 2017; Oldengott, Tram, Rampf & Wong 2017

Scales entering the horizon before decoupling are affected i.e. smaller scales are more affected

VNSI CONSTRAINTS: HEAVY MEDIATOR

Kreisch, Cyr Racine & Dore 2019

Preference for a "strong-interacting" mode emerges from some data combinations

vNSI: A WAY TO ALLEVIATE THE HUBBLE TENSION?

Kreisch, Cyr Racine & Dore 2019

vNSI: A WAY TO ALLEVIATE THE HUBBLE TENSION?

Oldengott et al. 2017

OUTLINE OF THE TALK

- INTRODUCTION
- Non-standard Interactions in the active NEUTRINO SECTOR
- Non-standard Interactions in the sterile Neutrino sector

CROSS-CHECK SCENARIO: LIGHT STERILE NEUTRINO

Possible solution(s)
to anomalies:
existence of a light sterile neutrino
with non-negligible mixing
with electronic nu

$$\nu_{\alpha L} = \sum_{k=1}^{N} U_{\alpha k} \nu_{k L} \quad (\alpha = e, \mu, \tau),$$

$$(\nu_{sR})^C = \sum_{k=1}^N U_{(3+s)k} \nu_{kL} \quad (s=1,\ldots,N_s),$$

CROSS-CHECK SCENARIO: LIGHT STERILE NEUTRINO

Cosmology robustly exclude region of large sterile mass and mixing params larger than 10^-3 in LCDM extensions

Light sterile solution to anomalies hard to accommodate

Parameter	experimental upper limit (95%)	cosmological upper limit (95%)		
		$\mathcal{P}(\log \Delta m_{14}^2)$	$\mathcal{P}(m_4)$	$\mathcal{P}(\Delta m_{14}^2)$
$m_4 \text{ [eV]}$	-	1.6	4.4	6.8
$\log_{10} U_{e4} ^2$	-	-3.04	-3.43	-4.0
$\log_{10} U_{\mu 4} ^2$	$-2.2~(u_{\mu})$	-3.17	-3.55	-4.16
$\log_{10} U_{\tau 4} ^2$	$-0.8~(u_{\mu})$	-3.18	-3.55	-4.19

Hagstotz+(incl.MG),2020

Martina Gerbino

Χ

ANL-HEP Seminar, 8Jul2020

A possible solution: new ("secret") neutrino interactions in the sterile sector can prevent production in the early Universe

$$\mathcal{L}_s = g_X \bar{\nu}_s \gamma_\mu \frac{1}{2} \left(1 - \gamma_5 \right) \nu_s X^\mu$$

Hannestad et al. 2014; Dasgupta & Kopp 2014; Bringmann et al 2014; Saviano et al 2014; Mirizzi et al 2015; Chu, Dasgupta, Kopp 2015; Chu et al. 2018

MSW effect

Mixing angle in matter is changed due to the effect of neutrino – matter (usually electrons) scattering

In ordinary matter (i.e., weak interactions)

$$n_{\rm res} = \frac{\Delta m^2 \cos 2\theta}{2E\sqrt{2}G_F}$$

For secret vector interactions, $G_F \rightarrow G_X$

Active-sterile oscillations are suppressed by the sterile own matter potential ("quantum zeno effect")

For $g_x > 10^{-2}$ and $M_x < 10$ MeV, it is still possible to copiusly produce neutrinos at low (T<I MeV) temperatures, through an interplay between vacuum oscillations and collisions ("scattering-induced decoherence")

(Saviano et al 2014; Mirizzi et al 2015;)

Relaxation rate to chemical equilibrium:

$$\Gamma_t \simeq \langle P(\nu_\alpha \to \nu_s) \rangle_{\text{coll}} \Gamma_X$$
.

Number conservation and flavour equilibration imply

$$n_{s,after} = n_{a,after} = 3/4 n_{a,before}$$

Then collisions lead to thermalization and

$$T_{\nu} = \left(\frac{3}{4}\right)^{1/3} T_{\nu}^{\text{std}}$$

$$T_{\nu} = \left(\frac{3}{4}\right)^{1/3} T_{\nu}^{\text{std}} \longrightarrow N_{\text{eff}} = 4 \times \left(\frac{3}{4}\right)^{4/3} \simeq 2.7$$

$$\Lambda$$
CDM (N_{eff}=2.7) + m_s + G_X

$$G_X < 2.8 (1.97) \times 10^{10} G_F$$

 $m_s < 0.82 (0.29) \text{ eV}$

$$H_0 = 62.6 + / - 1.8 \text{ km/s/Mpc}$$

(65.3 + / - 0.7)

$$(G_X > 10^8 \text{ is always assumed})$$

The mass constraint is still there!

Excluded region from Forastieri+ (incl ML) 2017 •

Catch-22 situation:

If nonstandard interactions are strong enough to prevent sterile neutrino free-streaming (and erase the neutrino mass bound) then they should leave an observable imprint on CMB anisotropies

In the end, you violate either the mass or the interaction strength bound.

VNSI AND SBL ANOMALIES (AND HO AGAIN!)

Another possibility: couple the sterile neutrino to a light pseudoscalar (Archidiacono et al. 2015, 2016, 2020)

- Lack of free-streaming in the sterilepseudoscalar fluid;
- Annihilation of steriles to pseudoscalars when T<m_s

This yields a good fit to the combined CMB + HST data, but a poor fit to CMB alone.

Moreover, high-ell polarization excludes most of the parameters space for m_s allowed by SBL anomalies

Uses Planck2018 TTTEEE data

SUMMARY

- Cosmological observations are in good agreement with the standard picture of the evolution of the neutrino background;
- the precision of the available data allows to test non-standard scenarios with high accuracy;
- the strength of neutrino interactions mediated by a light particle is constrained by CMB observations at the 10⁻⁷ level (z_{rec} < 4000 from PlanckTT+lowP+lensing)...
- ...while, for a heavy mediator, $G_{eff} < 10^2 \, GeV^{-2}$.
- Use of non-standard interactions in the active and/or sterile sector to erase or alleviate tensions (e.g. H0, SBL anomalies) seems problematic

BACKUP SLIDES

PlanckTT+lens+BAO

Blinov et al., 2019

SECRET INTERACTIONS AND COSMOLOGICAL PERTURBATIONS

Higher order momenta are driven to zero by the collisions flucuations are confined to the monopole and dipole

Kreisch et al. 2019

