Production of forward neutrinos at the LHC

Maria Vittoria Garzelli

with input from

W. Bai, M. Dallavalle, M. Diwan, Y.S. Jeong, F. Kling, M.H. Reno + PROSA collaboration

maria.vittoria.garzelli@desy.de

EF06 meeting - PDF at small x and Forward QCD, July 29th, 2020

Ongoing experimental efforts to prepare experiments for measuring forward ν at Run3 LHC

Idea: detectors at a distance of several hundred meters from LHC interaction point, along the tangent to the LHC arc, can intercept an high flux of LHC neutrinos.

Among the others:

- \ast First studies within CMS during 2015
- * XSEN letter of intent CERN-LHCC-2019-014 (2019).
- \ast Technical proposal requested by LHC committee not yet submitted.
- * Start date ?

In the meanwhile,

* Faser ν letter of intent and proposal submitted in 2019 ([arXiv:1908.02310]),

- * already approved and financed!
- * under construction.
- \ast Data taking probably from the beginning of LHC Run 3.

From hadrons to neutrinos

* neutrino flux from heavy-flavour decay:

 $pp \rightarrow c, b, \bar{c}, \bar{b} + X \rightarrow heavy-hadron + X' \rightarrow \nu(\bar{\nu}) + X'' + X'$ where the decay to neutrino occurs through semileptonic and leptonic decays: $D^+ \rightarrow e^+ \nu_e X, \quad D^+ \rightarrow \mu^+ \nu_\mu X,$ $D^\pm_s \rightarrow \nu_\tau(\bar{\nu}_\tau) + \tau^\pm, \quad \text{with further decay } \tau^\pm \rightarrow \nu_\tau(\bar{\nu}_\tau) + X$

* neutrino flux from light-flavour decay:

 $pp \rightarrow \pi^{\pm}, K^{\pm} + X \rightarrow \nu_{\ell}(\bar{\nu}_{\ell}) + \ell^{\pm} + X,$ $pp \rightarrow K^{0}_{S}, K^{0}_{\ell} + X \rightarrow \pi^{\pm} + \ell^{\mp} + \nu_{\ell} + X$

 $c au_{0,\,\pi^{\pm}}=$ 780 cm, $c au_{0,\,K^{\pm}}=$ 371 cm, $c au_{0,\,D^{\pm}}=$ 0.031 cm

N.B. other channels of neutrino production occur in the Standard Model, e.g. W boson and t quark production and leptonic decay, but they are suppressed with respect to the previous channels.

* In our work we focus especially on neutrino fluxes from heavy-flavour: $\nu_{\tau} + \bar{\nu}_{\tau}$ are mainly produced through this channel.

M.V. Garzell

 $\sigma(pp \rightarrow c\bar{c}(+X))$ at LO, NLO, NNLO QCD

data from fixed target exp (E769, LEBC-EHS, LEBC-MPS, HERA-B) + colliders (STAR, PHENIX, ALICE, ATLAS, LHCb).

* Assumption: collinear factorization valid on the whole energy range.

- * Sizable QCD uncertainty bands not included in the figure.
- * Leading order is not accurate enough for this process: at NLO new channels open, due to *qg* interactions.

M.V. Garzell

Forward ν production @ LHC

From parton production to heavy-flavour hadrons

Different descriptions of the transition are possible:

1) Convolution of cross-sections with Fragmentation Functions

2) Fixed-order QCD + Parton Shower + hadronization:

match the fixed-order calculation with a parton-shower algorithm (resummation of part of the logarithms related to soft and collinear emissions on top of the hard-scattering process), followed by hadronization (phenomenological model).

Advantage: fully exclusive event generation, correlations between final state particles/hadrons are kept.

Problem: accuracy not exactly known.

Both methods 1) and 2) used here.

In both cases, additional non-perturbative contribution due to intrinsic $\langle k_T \rangle$, related to the confinement of the initial state partons into hadrons, is added.

$D_s + \bar{D}_s$ production: theory predictions vs. LHCb experimental data

- * p_T distributions in different rapidity bins are considered.
- * Experimental data have uncertainty bands much smaller than theory predictions.

* The optimization of the choice of the factorization scale plus the effect of an intrinsic $\langle k_T \rangle$ increase the agreement between central predictions and experimental data.

M.V. Garzell

Forward ν production @ LH(

And if we try to fit the LHCb experimental data ?

* The "best fit" configuration turns out to correspond to intrinsic $\langle k_T \rangle$ values that are larger than those expected on the basis of other processes.

* This shows that there are other QCD effects that can be approximately reabsorbed in an (intrinsic) $\langle k_T \rangle$ smearing model, which play a role in this process.

 $\ast\,$ Part of these effects are expected to be of perturbative origin and another part of non-perturbative origin.

Comparison of $(D_s + \overline{D}_s)$ energy distributions by different theory approaches

* (NLO + FF + $\langle k_T \rangle$) vs. (NLO + Parton Shower + hadronization + built-in $\langle k_T \rangle$), where (Parton Shower + hadronization + built-in $\langle k_T \rangle$) are from PYTHIA.

* Further ongoing studies: sensitivity to different PYTHIA tunes

Energy distribution of forward $\nu_{\tau} + \bar{\nu}_{\tau}$

- * direct decay and chain decay contribute to the total in different energy regions
- * contributions from *B* meson decays are one-two order of magnitude smaller than those from *D* mesons.
- * What are the dominant uncertainties on these distributions ?

$(\nu_{\tau} + \bar{\nu}_{\tau})$ distributions, for various cuts on y or η of charm quark (PRELIMINARY)

* Absolute and normalized plots

- * A cut on charm rapidity $\sim y_c$ produce ν_{τ} peaked at a similar y_c .
- * In the forward region, a cut on charm pseudorapidity η_c produce neutrinos peaked at $\eta_{\nu} < \eta_c$.

Charm production at large rapidity/pseudorapidity

- * For very forward charm production ($\eta_c \gtrsim 7$), cutting on y_c is very different than cutting on η_c .
- * charm mass information encoded in y_c (not in η_c): maximum rapidity bound by the mass of the particle.

M.V. Garzelli

Forward ν production @ LHC

Scatter-plots in (η , E) for heavy-flavour ν and $\bar{\nu}$ production

PYTHIA in [arXiv:2004.07821] vs. NLO QCD + PYTHIA (PRELIMINARY).

Scatter-plots in (*E*, η) for ν_{τ} and $\bar{\nu}_{\tau}$ production

E (GeV)

DPMJET/FLUKA in [arXiv:2004.07821] vs. NLO QCD + PYTHIA (PRELIMINARY).

Thinking to the future (HL-LHC): Forward- ν facility

Which are the experimental requirements for getting data useful for better understanding/constraining QCD and BSM elements at a Forward- ν facility at HL-LHC ?

Snowmass Lol in preparation: whoever is interested to contribute to the QCD part, please contact Felix Kling (felix@slac.stanford.edu) or myself.

 \Rightarrow Interesting aspects, pointed out by the EF06 conveners:

- disentangling the complementarity of the potential of the Forward- ν facility w.r.t. to detectors at future colliders (LHeC, EIC, FCC.....).
- Would it be useful to have a Forward- ν facility, complementing one of these future experiments ?

Examples of QCD-related physics opportunities at a HL-LHC forward ν facility

- * heavy-flavour production asymmetries
- * gluon distribution in proton PDF
- * light-quark distributions in nuclear PDFs
- * improving QCD predictions for astroparticle physics

from LHCb coll. [arXiv:1805.09869]

- * 3σ evidence for an asymmetry of ~ -0.5 % observed at both $\sqrt{s} = 7$ and 8 TeV: $A_p(D_s^+) = \frac{\sigma(D_s^+) - \sigma(D_s^-)}{\sigma(D_s^+) + \sigma(D_s^-)}$
- * Waiting for 13 TeV data, is this an hint of $s(x) > \overline{s}(x)$ in the proton ?
- * Connections with non-universality of fragmentation....

* Implications for a Forward ν facility ?

M.V. Garzell

Sensitivity of the low-x gluon to the PDF parameterization employed

from O. Zenaiev et al. [arXiv:1911.13164]

* Effects of different gluon parameterization in the PROSA 2019 analysis.

* Data on forward *D*-meson at LHCb constraints *g* only down to

 $x \sim 10^{-6}$.

M.V. Garzelli

Forward ν production @ LHC

(x, Q) coverage of various experiments for pPDF fits

Very preliminary by F. Kling

Is forward ν production sensitive to saturation ?

M.V. Garzelli

Main measurement at a forward ν facility: average ν -induced DIS CC cross-section per (*A*-weighted) nucleon

from Faserv collab. [arXiv:1908.02310]

$$\langle \sigma_A \rangle = \frac{\phi_{\nu} \sigma_{\nu A} + \phi_{\bar{\nu}} \sigma_{\bar{\nu} A}}{\phi_{\nu} + \phi_{\bar{\nu}}}$$

computed from the number of events that will be observed. If one is able to control the fluxes (input) one can infer separate precise info on $\sigma_{\nu A}$, $\sigma_{\bar{\nu}A} \Rightarrow$ useful for nuclear PDFs.

M.V. Garzell

(x, Q^2) coverage of fixed-target DIS data for nPDF fits

from M. Walt et al. [arXiv:1908.03355]

* Inclusive DIS data with charged lepton beams for light and heavy targets.

 \ast Data on ν interactions on Fe and Pb targets (CDHSW, CHORUS) also included.

Adding (Q^2, x) coverage of CC DIS induced by ν at a forward ν facility

preliminary modifications of previous plot by F. Kling

* Possibility of distinguishing ν_{μ} and $\bar{\nu}_{\mu}$ allow for (d, u) flavour decomposition. At LO: $F_2^{\nu} = 2x(d+s+b+\bar{u}+\bar{c}+\bar{t})$, $F_2^{\bar{\nu}} = 2x(u+c+t+\bar{d}+\bar{s}+\bar{b})$ * Possibility to go beyond the assumption $\bar{u}=\bar{d}=\bar{s}=s$ thanks to charm DIS data.

Prompt neutrino fluxes:

theoretical predictions from [arXiv:1911.13164] vs. IceCube upper limits (v_{u} + anti- v_{u}) flux

* IceCube upper limit on prompt fluxes from the 6-year analysis of thoroughgoing μ tracks from the Northest Hemisphere [arXiv:1607.08006] assumed the ERS flux as a basis for modelling prompt neutrinos (reweighted to the H3p CR flux).

 \ast Forward- ν facility can produce data that will help constraining present theoretical uncertainties!

M.V. Garzell

Conclusions

- \ast Experiments active during Run 3 are expected to collect data on forward ν production.
- * Snowmass ongoing studies for:
 - understanding QCD requirements which can allow for a proper interpretation of the data of these experiments,
 - unrevealing physics potential of possible extensions of these projects/new Forward- ν facility at HL-LHC.
- * Contributions from the Snowmass community are welcome!

Thank you for your attention!