Status of vacuum insulated pipe development

9 July 2020, FNAL/KEK meeting

Tsunayuki Matsubara (KEK)

Target Helium Cooling System

Simple diagram of the system

- Compressor

 Buffer tank
- Pressure applied by the compressor is 0.16 MPaG
- Helium gas from the target (~200°C) is cooled by 1st (2nd) heat exchanger to ~70°C (30°C)
- · Comparable pressure drop at target & 1st heat ex.

Upgrade toward 1.3 MW

Current target design

Cooling capacity: 750kW + 20% margin = 900 kW → Need to upgrade

Upgraded design

- High flow rate to accept x1.7 of heat load (24 kW @ 750 kW → 41 kW @ 1.3 MW)
- High pressure tolerance ("0.16 → 0.5 MPaG" by the compressor, for reasonable flow velocity)

R&D items for the upgrade

- 1st heat exchanger → Vacuum insulated pipe
- Remote exchange method of the pipe
- New heat exchanger & new compressor
- Pipes from the Helium vessel to the Machine room

Why the new pipe?

- Re-designing for the higher pressure tolerance (bellows, especially)
- \cdot Low ΔP can relax required specification of the compressor
- Cooling at low radiation level to reduce radioactive water
- Good maintainability of the heat exchanger
 - → Possible input for LBNF?

Reminder: Last meeting (21 Oct. 2019)

Preliminary results of pressure drop at the pipe are reported

· Updated boundary conditions: Fixed mass flow rate @ inlet & velocity @ outlet

	Mass flow [g/s]	R _{pipe} [mmΦ]	ΔP [MPa] @Tsuna	Comment
Current system	30	23.9	0.044	Comparable w/ 0.06MPa.
Updated system	60	23.9	0.051	0.14 MPa in the past sim.
(0.1→0.5 MPaG)		30.7	0.015	Increased diameter.

- \cdot Negligible ΔP for the increased diameter is found
 - \rightarrow No problem in the pressure drop (i.e. 0.015 MPa << 0.5 MPa if 30.7 mm Φ)

Prototype

Point of the design

- Inner diameter : 30.7 mm $\Phi \rightarrow$ Acceptable pressure drop
- Thickness of inner pipe : Sche. 5S (t = 1.65 mm) \rightarrow 0.5 MPaG tolerance
- Outer diameter: 50 mmΦ → Same as current 1st heat exchanger
- Radiation tolerance : SUS304 (pipe), AI (insulation), No solvent \rightarrow OK
- Temperature tolerance: < 800°C, Baking process to reduce out gas → OK
- Long stability: Record of 7 years operation at least → OK
- Length: ~0.7 m → Long enough to do heat insulation test

Test of the heat insulation (16 Mar. 2020)

- Heat insulation test in a thermostatic chamber (Stable ~60°C)
- · Air flow (~200°C) within a range of flow rate of 10~100 L/min
- Temperature measurement
 - 2 points at gas inlet/outlet, 4 points at surface of bare pipe,7 points at surface of insulated pipe & one in the chamber

Test results

· Equilibrium temperature was measured for 3 different flow rate

- Good capability of heat insulation at the region is confirmed
- No significant difference in this range of flow rate

Comparison with simulation (COMSOL)

- Flow rate of 10~100 L/min \rightarrow Mass flow rate of 0.12~1.2 g/s if calculating with density of air (1 atm 200°C) is 0.72 g/l
- Simulation was performed with conditions below

- Comparable results in case of 0.1 g/s
 but higher than observation in 1.0 g/s
- Investigating the difference with observation
 - Flow rate correction?
 - Design of the edge of insulated region?
 - Boundary condition in a chamber?

Extrapolation to higher flow rate & He gas

- More flow rate makes heat transfer around edge to middle of the pipe
- Helium gas has x5 higher thermal conductivity than air

Remote exchange - Difficulty

- Current 1st heat exchanger is not designed for replacement
 - · Max. diameter of the wrench pipe is too large to pull up through the support module
 - The nut of 1-1/2 Swagelok prevents to pull up through the wrench pipe
- Pre-swaging before mounting is necessary for the new pipe
 - If we do in the same way as performed in the 1st heat exchanger installation, this have to be done remotely as it is close to the irradiated materials now.

Remote exchange - Solution

Cut top & pull down

- Cutting both 1st heat ex. & wrench pipe on the support module
- · Remote operation become very simple

New joint & wrench pipe

- Smaller joint $(1-1/2" \rightarrow 1-1/4")$ allows us to insert it from the module top
- · No remote work. Easy to replace again

Final design of the pipe (not yet finalized)

· Designed to fit current equipments (e.g. Limited space on the module)

Plan: Production in this JFY & Test before installation in next JFY

Other works toward the upgrade

- Extension of the vacuum insulated pipe to outside of the Helium vessel
 - For easier access to the new heat exchanger
 - Need new flexible pipe & new feed through with vacuum insulation

- Selection of new heat ex. (Same type as 2nd heat ex? Started investigation)
- Selection of new compressor (Less outlet pressure → Relaxing specification)

Status & prospects

- 1st stage of the upgrade: In the Helium vessel (e.g. Pipes & heat ex.)
- · 2nd stage of the upgrade : In the Machine room (e.g. pipes & compressor)

Backup

Details of 1st heat exchanger

Details of other system

Compressor

- ・オイルフリーコンプレッサ
- · 堀技研工業(株)製 2640TD

量: 1250 Nm3/h

· 伝熱面積: 5.6 m²

2nd heat exchanger

・ブレージングプレート式熱交換器

・日阪製作所(株) 製 BXC-724-PU-30

Other circulation system

- ・アイハラ (株) 製
- (*) 圧縮熱はアフタークーラーによって除熱
- (*) バッファタンク (1.24 m³、耐圧0.97MPa) でガス貯蔵
- (*) バッファタンクには0.3 MPaGの安全弁が備え付け
- (*) 流量はおよび圧力は、循環系へのガスの 充填量とバッファタンクからコンプレッサに戻る バイパス流量を調整することにより制御
- (*) コンプレッサ吸入口には圧縮部への異物混入を防ぐ ストレーナ (~数百 μ m以上)、コンプレッサ吐出口には 標的部への異物混入を防ぐHEPAフィルタ (1μm以上)

