ILC Muon Identification RPC and Scintillator Detector Plane Studies

Caroline Milstene Fermilab

Collabor at or s

D. Warner, R. Wilson - Colorado State U.
E. Fisk, C. Milstene, A. Para-Fermilab
R. Abrams* and R. Van Kooten - Indiana University G. Pauletta - INFN - Udine
A. Dychkant, A. Maciel - Northern Illinois Univ.
M. Wayne and M. McKenna - Univ. of Notre Dame
P. Karchin, A. Gutierrez - Wayne State Univ.
M. Tripathi - Univ. of California Davis H. Band - Univ. of Wisconsin

*T956 spokes person.(T956 participants in italics)

January 18, 2007

Outline

- Muon Detector R&D Objectives
- RPC Studies
- Scintillator Detectors and Test Beam Setup
- Measurements and Test Results
- SiPM Preliminary Test
- Near Term Plans
- Fut ur e Plans

Proposed SiD Muon System/ Tail Cat cher

•Central Muon System:

After 4.6 nuclear interaction lengths (λ) Of calorimeters and the 5T solenoid coil and cryostat 1.27 $\lambda \rightarrow -6$ inter. Length. • Installed in the Iron of the 5T solenoid flux return ~ 2.30m of Fe:~18 λ total.

• Central barrel 5.7 m long, R = 3.5 m.

•Barrel and EndCaps Muon System unit: 10 cm thick Fe; 4 cm gaps

•Total detector area ~6000 m² for 14 layers.

Candidate detector technologies: RPCs and/or Strip-scintillator

SiD μ Detector Candidate Technologies

• Resist ive Plate Chambers with signal pick-up strips.

Used in several experiments; Ease/low cost of manufacturing; Dual gap - for high efficiency.

• Scintillator strips, WLS fiber and photon detectors.

Employed by MI NOS and other experiments with MAPMTs. New photo-detector technology, multi-pixel Si detectors, may be a cost effective alternative to MAPMTs.

Muon Detector - RPC Studies

• Survey of RPC detector performance at:

BaBar BELLE BES

- Understand problems and successes.
- BES has manuf act ur ed ~ 2000 m² of Bakelite RPCs.
- Princeton Chan-Guo Lu (ALCPG Workshop, Snowmass, Aug14-17,2005 & Proceedings) and Wisconsin, H. Band are following tests and progress.
 - A few transparencies from H. R. Band's presentation at the last SiD meeting in October 2006 follow.

RPC Pr of ile

H. R. Band - U. of Wisconsin

Barrel Layout

- Assume Octant geometry
 - ½ width covered by staggered gusset plates on each end
 - $2\frac{1}{2}$ width chambers inserted from opposite ends
- # of layers and gap thickness drive outside radius and amount of steel needed

RPC R&D Issues

- RPCs have proven to be less robust than initially promised
- Many observed failure modes
 - Improperly cured linseed oil
 - Eroded graphite coatings
 - Too much humidity BELLE glass RPCs
 - Too little humidity BaBar bakelite RPCs
- However, extensive R&D has led to a better understanding of aging mechanisms
 - Improved construction techniques
 - Avalanche mode
 - Humidified gas
 - Aging tests to simulate 10 years of LHC operation.
- Will know in several years from the operational experience of CMS, ATLAS, BELLE, BaBar, BESIII if RPCs can be made reliable

Status of present streamer mode RPCs

- BELLE glass RPCs doing well after changes to gas plumbing
 - No signs of aging when rat es are limit ed (0.2 Hz/cm^2) .
 - Outer endcap layers turned off
- 2nd generation BaBar Bakelite RPCs
 - < 2 Hz/cm² few problems in 4 years
 - >20 Hz/cm² losing efficiency
- BES III installing ~2000 m² of Bakelite RPCs
 - Innovative plastic film surface no linseed oil
 - Prototypes show stable performance

RPC Aging Studies

- BaBar (Wisconsin&Roma)
 - Avalanche mode
 - Fluorine production (HF) & absorption
 - Humidity
 - High Rate effects
- Princet on
 - Avalanche mode
 - Surface quality studies
 - Gas
 - Fluorine production (HF) & absorption
- Bakelit e Experience
 - Need glass RPC tests
- October 28, 2006

Prototype Scintillator R&D Goals

Performance Related

- -To det er mine t he single muon det ect ion efficiency per layer. Meas. charge => no. of photo-electrons. WLS fiber ϕ ?
- What is the uniformity of the response across the detector?
- How effective is the detector for use as a tail catcher

Design and Cost Related

- Do we need to readout both ends of each strip? (cost effectiveness)
- Refinements or modifications needed? e.g. "To glue or not to glue WLS fibers?"
- Obtain cost estimates, possible cost reductions.
- Provide basis for comparison with other techniques.
- New photo-detector technology?

ILC MuonTest Setups

Prototypes installed in Fermilab Beam Test Facility 256 scintillator strips 384 PMT channels

January 18, 2007

Four Detector planes

Single ended readout

Dual readout

Beam Operating conditions

- DAQ triggered on beam; no strips in the trigger.
- As prime user we had low intensity, ~ 1000p/sec during spill, two 1-sec spills/minute, 12 hours/day.
- As secondary user we operated up to ~20,000p/sec.
- DAQ data rate limited < 50Hz. (ADC readout time)
- Beam spot at +120 GeV/c ~ 1 cm FWHM
- Additional beam particles within ADC gate (170ns)
 ~10% of time, even at low rates.

Instrumentation

Circles show points that were measured. Numbers indicate strip numbers January 18, 2007 ILC Test-beam Workshop - 19 Milstene

Calibration of ADCs

Circles show points that were measured. Numbers indicate strip numbers January 18, 2007 ILC Test-beam Workshop - 23 Milstene

Fiber Attenuation vs. Lengths

ILC Test-beam Workshop -Milstene 24

Signal along Strips +38,+42

Pedestal Subtracted and with ADC calibration Included.Double beam events removed

January 18, 2007

Signal Along the Strips +24,-24

- Pedestal Subtracted and with ADC calibration Included.
- Double beam events removed

January 18, 2007

Photo-electron Yield Estimate

2 pC = 12.5 X 10⁶ e's

Nom. Gain = 2.1×10^{6}

⇒~6 p.e.'s

Hamamatsu H7546B 64 channel MAPMT

Effects of Variations of MAPMT Gain per Channel

A. Driutti and G. Pauletta – INFN Trieste/Udine INFN/Udine test of ITC-Irst SiPM's at SiDet using prototype LC muon scintillator plus WLS fiber. MTest data Sept 2006. 25 x 25 pixels with each pixel 40μ X 40μ Gain = 1.6 x 10⁷; Noise ~ 0.7 MHz; http://sipm.itc.it

January 18, 2007

Near Term Objectives

- Continue to analyze present data (universities and FNAL; funding problem)
- Calibrate MAPMTs: use measured MAPMT gain (WSU)
- Replace LeCroy ADCs with 64 channel version of Minerva front-end digitizers and test at MTBF. (IU, FNAL, UCD)

Future Plans

- Procure SiPMs/ Multi-Channel Photon Counters;
- Bench Test at SiDet. Continue collaboration with IRST Trento (C. Piemonte) and INFN Udine (G. Pauletta).
- R&D and beam tests of ILC muon scintillation counters with Si PMs at MTest
 - A supplement ary LCRD proposal (IU, WSU, UND, UCD and NIU) has been submitted for this work.
- Test of Geiger-mode Avalanche Photo-diodes developed by A-Peak and Colorado State Univ (SBLR) with scintillator strips at MTest in a few months. (D. Warner - CSU)
- Because SiPM/MPPCs look very promising we expect to build additional prototypes with NIU style scintillator and SiPM readout. Will be tested at MTest.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.