DHCAL Progress and Test Beam Preparation

Lei Xia ANL-HEP

Introduction

- Particle Flow Algorithm (PFA)
 - Is widely believed to be THE way to achieve precise jet measurement at the ILC
 - Demonstrated ~3GeV jet energy resolution at Z-pole
 - Two-jet events with light quarks (Geant4 simulation)
 - Higher CM energy study is in progress
 - Key issue is particle separation in the calorimetry
 - HCal single particle energy resolution is less important
- Digital Hadron Calorimeter (DHCal)
 - Provide fine segmentation (~1cm²) which makes pattern recognition easier
 - Simplifies readout system
 - Simplifies detector calibration
 - Single particle energy resolution is pretty good (Geant4 simulation)

Active Medium Candidates

Active medium R&D status

Measurement	European RPC	US RPC	GEM	mMegas
Signal characterization	yes	yes	yes	yes
HV dependence	yes	yes	yes	yes
Single pad efficiencies	yes	yes	yes	
Geometrical efficiency	yes	yes		
Tests with different gases	yes	yes	yes	
Mechanical properties	?	yes		
Multipad efficiencies	yes	yes	ongoing	
Hit multiplicities	yes	yes	ongoing	
Noise rates	yes	yes	ongoing	
Rate capability	yes	yes		
Tests in 5 T field	yes	no	no	
Tests in particle beams	yes	yes	ongoing	planned
Long term tests	ongoing	ongoing	ongoing	
Design of larger chamber	yes	yes	ongoing	ongoing
Overall R&D	Done	Done	Ongoing	Started

RPC chamber beam test

- European RPC effort
 - Chamber in beam test 2002 (IHEP, Protvino)
 - RPC characteristics study: efficiency, hit multiplicity, rate capability, etc
- US RPC effort
 - 3 RPC's (2 RPC designs, 2 readout) tested at Fermilab MTBF (Feb, 2006)
 - Tested with Muon, Pion and Proton beams
 - RPC characteristics study: efficiency, hit multiplicity, rate capability, etc
 - All test results consistent with cosmic ray tests at ANL
 - Very positive experience with Fermilab MTBF

CALLE Big goal: 1m³ prototype section

Motivation for Prototype Section(PS) and beam tests

- validate RPC and GEM approach (technique and physics)
- Validate concept of the electronic readout
- Measure hadronic showers with unprecedented resolution
- Validate MC simulation of hadronic showers
- Compare with results from Scintillator HCAL

• Details of the PS:

- 1 m³ (to contain most of hadronic showers)
- 40 layers with 20 mm steel plates as absorber
- Lateral readout segmentation: 1x1 cm²
- Longitudinal readout segmentation: layer-bylayer
- Instrumented with Resistive Plate Chambers (RPCs) and Gas Electron Multipliers (GEMs)
- Biggest challenge:
 - Readout ~400,000 channels

Comparison of hadron shower simulation codes by G Mavromanolakis

DHCal test beam plan

- US RPC + GEM: staged approach
 - Feb.- Mar. 2007: GEM chamber characteristics run at Fermilab MTBF
 - This will be done using 100 channel ADLink PCI based DAQ card
 - April 2007: "slice test" at Fermilab MTBF
 - Slice test: mini-calorimeter stack (~10 layers)
 - Active medium: 8 RPCs + 2 GEMs, 16x16cm² active area in each chamber
 - Absorber: 4mm copper + 16mm steel
 - Validate DCAL chip + readout system for prototype section
 - Readout system as close as possible to the 1m³ prototype section
 - Limited data/simulation comparison
 - 2 additional GEMs will be tested with KPix chip, 8x8cm² active area
 - Later 2007:
 - RPC: finish slice test, analyze data, prepare for prototype section
 - 2008: construction and test of prototype section (if funding permits)
 - Construct 1st prototype section: RPC + DCAL readout
 - European RPC effort: join the effort and supply part of the RPC's
 - Detailed test program in Fermilab test beam
 - Construct 2nd prototype section: GEM + ? Readout
- MicroMegas
 - 2007: construct 1 50x50cm² chamber for beam test
 - 2008: construct 1 layer of 100x100cm² prototype

ALReadout system for PS: conceptual design Front End Back End Calorimeter for

- 64 channels, programmable threshold, digital hit pattern, time stamp
- Pad board
 - Slice test: 16x16 1cm² pads, 20x20cm²(RPC)/30x30cm²(GEM) in size with empty edges
 - PS: 32x48 1cm² pads, 32x48 cm² in size
- Front-end board
 - Same design for slice test and PS: hosts 4 DCAL chip, 16x16 pads, 16x16cm² ÷
 - Glued to pad board with conductive epoxy
- Data concentrator board
 - Slice test: 1/front-end board, take data from 4 DCAL chips
 - PS: take data from 3 FE boards, 12 DCAL chips
- Super concentrator:
 - Slice test: not used
 - PS: read 6 data concentrators, design similar to data concentrator
- Data collector: same design for slice test (1) and PS (7)
- Trigger and timing module: same design from slice test (1) and PS (1)

DCAL chip

- DCAL specs
 - Developed to read out digital (hadron) calorimeter
 - 64 input channels
 - Two gains: low (RPC) high (GEM)
 - Triggerless or triggered operation
 - Output: hit pattern + timestamp (100ns resolution)
- History of development
 - Conceptual design: early 2004 by ANL
 - Design started at FNAL: June 2004
 - A Mekkaoui, J Hoff, R Yarema
 - 1st submission: March 2005
 - Extensively tested, all functions performed as expected
 - Redesign:
 - Decrease gain by factor of 20(GEM) and 100(RPC)
 - Decoupling of clocks (readout and front-end)
 - 2nd submission: July 2006
 - 40 (packaged) chips in hand, being tested
- Tests done by the end of 2006
 - Read/write registers
 - Test of pipeline with ext. triggers
 - Threshold tests using on-board Q-inj: H-Gain
 - Threshold tests using on-board Q-inj: L-Gain
 - Tests of noise floor

DCAL test (1)

Threshold Response Tests Typical Channel (DAC=192, High-Gain) On-board Q-inj, ext. trig., pipeline enabled

Summary for All Channels (DAC=192, High-Gain) DCAL 2.1 - DAC = 192H

Slope

All channels OK, except Channel #31, 32 are noisier (understood)

DCAL test (2)

Ratio of slopes \sim 5. Expected \sim 8.4pF/1.5pF = 5.6

- Found 2 minor issues
 - Chip addressing only works at 0 address
 - Slice test: solved by adjusting the design of the FE board
 - PS: correct problem for production run
 - Noise pickup on ch31, ch32
 - Due to a close-by test line
 - RPC: not a problem
 - GEM: leave the test line unconnected when packaging
- A few more tests yet to do
 - Low-gain noise floor
 - External charge injection
 - Self-trigger
 - Digital noise pickup

Pad board and FE board (1) G Drake (ANL)

New Concept

Calorimeter for

Split old 'Front-end board'

Pad board

FF board

'front-end board' highly complex and difficult blind and buried vias + large board => (almost) impossible to manufacture split into two boards to eliminate buried vias

Pad boards

four-layer board containing pads and transfer lines can be sized as big as necessary relatively cheap and simple vias will be filled

Front-end boards

eight-layer board 16 x 16 cm² contain transfer lines, houses DCAL chip expensive and tough to design

Connections

board to board with conductive glue on each pad (being tested) cables for connection to data concentrators

Pad board and FE board (2)

4 layer pad board

V8 Is 380sq mill paol gold plated qty 1536 1cm center to center on botton side only (32 col. x 48 rows) 8 layer FE board All (almost) layers

T Cundiff (ANL)

Data concentrator boards

Functionality defined Protocol to data collector defined Being designed at ANL

Timing and trigger module

Functionality definedTRIGIN
TGATEPossibility of programming a commercially available moduleTo be designed by FNALTrigin
TGATE

New Design Effort

Actual design started Goal: first prototype by February 2007

Functionality

All data received as packets

Timestamp (24 bits) + Address (16 bits) + Hit pattern (64 bits)

Packets grouped in buffers by matching timestamps

Makes buffers available for VMF transfer

Monitors registers (scalars)

Slow control of front-end

Allows read/write to DCAL chips or data concentrator boards

Data Collectors

Trigger Controller

E Hazen (Boston)

-- see Roman's talk on Friday for CALICE test beam software

CALOTHER possibilities: KPix (SLAC/UTA) effort

Analog output. Two gain ranges High: 0 - 500fC, Low: 0 - 10pC Goal: 1024ch/chip + power pulsing

Current version

v3 - 64 channels - September 2006 (with GEM changes)

v4-64 channels, early 2007

Si-W Pixel Analog Section

- KPix is a potential alternative for DHCAL readout
- Significant R&D is still needed to work out the system design
- FE board is going to be extremely challenging with 1024ch/chip

- Based on MAROC2 architecture (proven)
 - MAROC2: 64ch MAPMT chip for ATLAS lumi
 - MAPMT signal dynamic range ~ RPC, GEM signal
- HaRDROC ~ MAROC + power pulsing + digital memory
 - Submitted September 2006
 - Expected delivery Dec, 2006

HarDROC development

- PCB hosting 4 HarDROC chips will be developed and tested (IPNL + LAL + LLR + LAPP)
 - PCB expected in March 2007
 - To be tested on 10x40 cm² GRPC (collab. with IHEP)
 - To be tested on 10x40 cm² mMEGAS (collab. with Saclay)
 - Test with cosmic ray bench and then with beam
- Future: extend to 1x1m2 for GRPC and mMEGAS
 - In collaboration with ceimat (Madrid)

Readout summary

CA	ALLE Readout summary						
Calorin		Item	DCAL	KPix	HaRDROC		
	FE ASIC	Current version	v2	v3	v1		
		Current ch# /final ch#	64/64	64/1024	64/64		
		Test	Almost done	Ongoing	Started?		
		Additional submission	No	Yes	?		
		Overall status	Almost done	Ongoing	Ongoing		
	Readout system for PS	Conceptual design	Done	Yes	?		
		FE board	Design finished	No	Started?		
		Concentrator	Design started	Design started	No		
		Data Collector	Design ongoing	No	No		
		Trigger Timing module	Specified	No	No		
		DAQ software	Started	Started	No		
		Overall system	Well advanced	Started	No		

• If funding permits, given current progress

- The 1st PS stack would (naturally) be: RPC + DCAL based readout
- ✤ The 2nd PS stack would be: GEM + ? Readout
- DCAL readout will be validated through the slice test (Apr.07, MTBF)

Calorimeter for LC Slice test: mechanical design

V Guarino (ANL)

Design accommodates 20 x 20 cm² RPCs as well as 30 x 30 cm² GEMs Stack is assembled, minor adjustment still needed

- New design provide a flush chamber surface
- Easier to assemble and assure gas tightness
- 1st chamber built and tested successfully

GEM chamber design

- GEM chamber design done, dimensions fixed
- New test chamber built at UTA
- 2 GEM chambers for slice test are being built

Calorimeter for LC Slice test: Trigger counters, Gas, HV

Beam telescope

J Li, A White, J Yu (UTA)

6 counters (3 x (1 x 1 cm²) + 2 x (19 x 19 cm²) Mounted on rigid structure all done

HV modules

E Norbeck (Iowa)

Need separate supplies for each chamber Modules (from FNAL pool) being tested

With additional RC-filter perform similarly to our Bertan unit in analog tests (RABBIT system) Still need to perform tests with digital readout

Gas system

E Norbeck, D Northhacker (Iowa)

Built manifold for 10 chambers Need approval for gas tanks (safety issue)

Slice test schedule

Summary

- DHCal R&D has been carried out for different active mediums
 - RPC efforts: done on R&D
 - GEM: in progress, expect to finish in ~ 1 year
 - MicroMegas: started
- Slice test is the next major test beam activity
 - Mini-calorimeter stack: 8 RPC's + 2 GEM's
 - DCAL readout system: as close as possible to 1m³
 - A lot of progress, expect move to test beam in April 2007
 - Validate readout system + some shower data
- Goal: 1m³ prototype section test beam
 - 1st stack: RPC + DCAL readout
 - 2nd stack: GEM + ? Readout
 - DCAL readout system: well advanced
 - KPix, HarDROC: alternative readout, chip under development
- Funding: biggest limiting factor...

Backup slides

CALICE Setup V-Trial at FNAL MTBF

Costs and Funding

A) Slice test is funded by LCDRD06, LDRD06 and ANL-HEP, and Fermilab funds

B) Prototype section not yet funded, but...

Stack	Item	Cost	Contingency	Total
RPC stack	M&S	607,200	194,600	801,800
	Labor	243,075	99,625	342,700
	Total	850,275	294,225	1,144,500
GEM stack * * Reusing most of the RPC electronics	M&S	400,000	165,000	565,000
	Labor	280,460	40,700	321,160
	Total	680,460	205,700	886,160
Both stacks	M&S	1007,200	359,600	1366,800
	Labor	523,535	140,325	663,860
	Total	1,530,735	499,925	2,030,660

Proposal for supplemental funds for \$500k/year over two years submitted to DoE With continuing resolution, it is not very promising ... wait one more year?