Protvino as a site for ILC detector test beams

Alexander Kozelov IHEP, Protvino, Russia

Jan 17, 2007

Outline

- 1. ILC requirements
- 2. IHEP accelerator parameters
- 3. General layout of beams
- 4. Proposed test beam zones
- 5. General questions
- 6. Conclusion

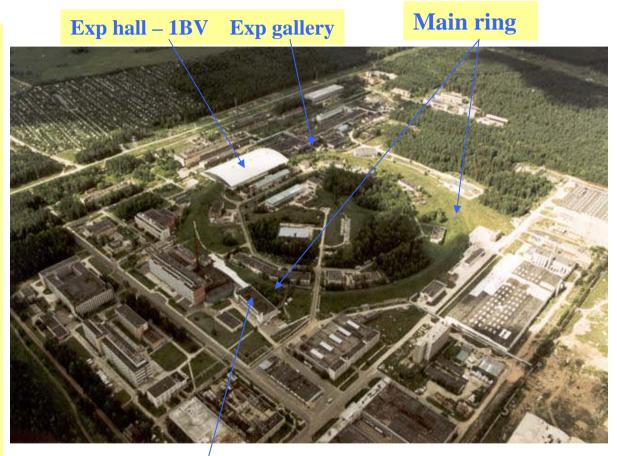
ILC requirements

1. Calorimetric response for individual particles

(to test options and tune the simulation)

- beams: h,e,µ
- momentum range: (1 50) GeV/c
- different incident angles
- statistics: 10⁶ per point, ~10² points
- **2. JET separation**

(to test/tune energy flow reconstruction)


- different combinations of e, h, γ , μ

with open angles ≥ 6 mrad

IHEP accelerator

70 GeV accelerator complex for protons = Linac - URAL-30, 30MeV + Booster – 1.5 GeV + Main ring – 70 GeV proton synchrotron

Works two times per year March-April Nov-Dec For each run 1 month for physics

Linac+Booster

IHEP accelerator parameters

- cycle time 10 s
- spill time 1.8 s
- -intensity ~ 1.10¹³ p/cycle
- -number of bunches 30
- RF structure: bunch length 40 ns, bunch spacing – 160 ns
- beams are from extracted protons and internal targets

Beams

In the 1BV exp hall are from internal targets with limited intensity (<10**7 part/spill):

- -negative hadrons up to 55 GeV
- -positive hadrons up to 20 GeV
- -photons, electrons up to 30 GeV
- -70 GeV protons from crystals

In the exp gallery are from extracted protons, have high intensity :

- -protons
- -intensive secondary hadrons
- -neutrino

Beams in the 1BV hall

These beams are suitable for tests

Negative beams (outside ring):

-Beam line N 2 -Beam line N 4 Both lines have a few branches

Positive beams (inside ring): -beam line N 18 -beam line N 6 1BV exp hall Downstream view for beam line N 4

Proposed test beam zones

In main 1BV hall:

- Beam line N 2B
- Beam line N 4V
- Soft hadron beam

For extracted proton beams :

- beam line N 22

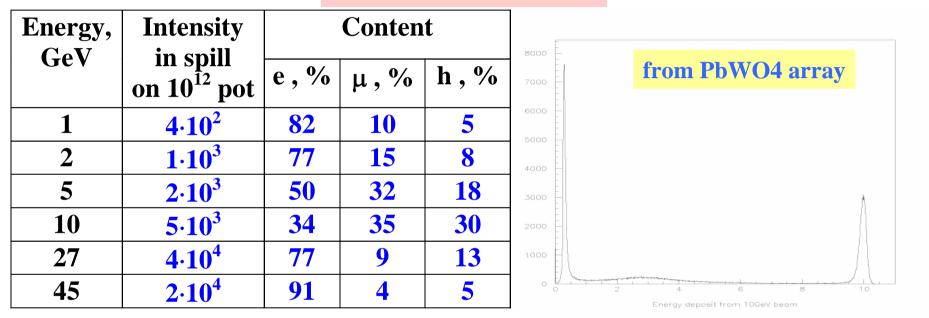
Tests with e and h beams can be done in one zone of beam line N 2B.

Particle type	Electron beam range, GeV/c	Hadron beam range, GeV/c
e	1- 45	-
h	1- 45	33 - 55
μ	1- 45	33 - 55

Muon halo over 1 m2 with intensity ~ 10**6 can be used for monitoring purposes

Heads of beams

N 2



Electron beam

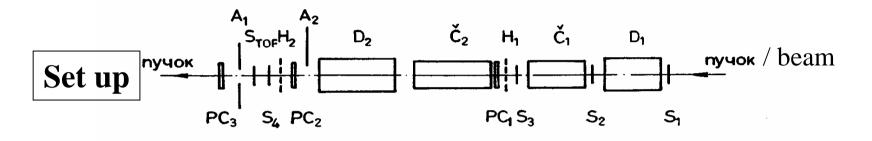
Energy, GeV	Beam resol.,	ECAL resol.,	BTS resol.,
	%	%	%
1	4.3	11.0	2.05
2	5.5	7.8	1.03
5	5.6	4.9	0.43
10	3.8	3.5	0.24
27	1.2	2.1	0.15
45	1.0	1.6	0.13

Beam tagging system allows to keep beam resolution
~10 times better than expected ECAL resolution
Beam spot, Ø ~ 3 cm

Electron beam

Admixtures of h⁻ and μ ⁻ allow to measure calorimetric response simultaneously for e⁻, h⁻ and μ ⁻ using Cherenkov counter

Hadron beam


- Momentum range (33-55) GeV/c
- Beam composition π^{-} 96.4 %
 - $\begin{array}{ccc} \mu^{-} & 1.0 \% \\ k^{-} & 2.3 \% \\ p^{-} & 0.3 \% \end{array}$

Intensity for $\Delta p/p = \pm 1\%$

Energy, GeV	Intensity in spill on 10 ¹² pot
33	1.10 ⁶
40	3·10 ⁶
55	2.10^{5}

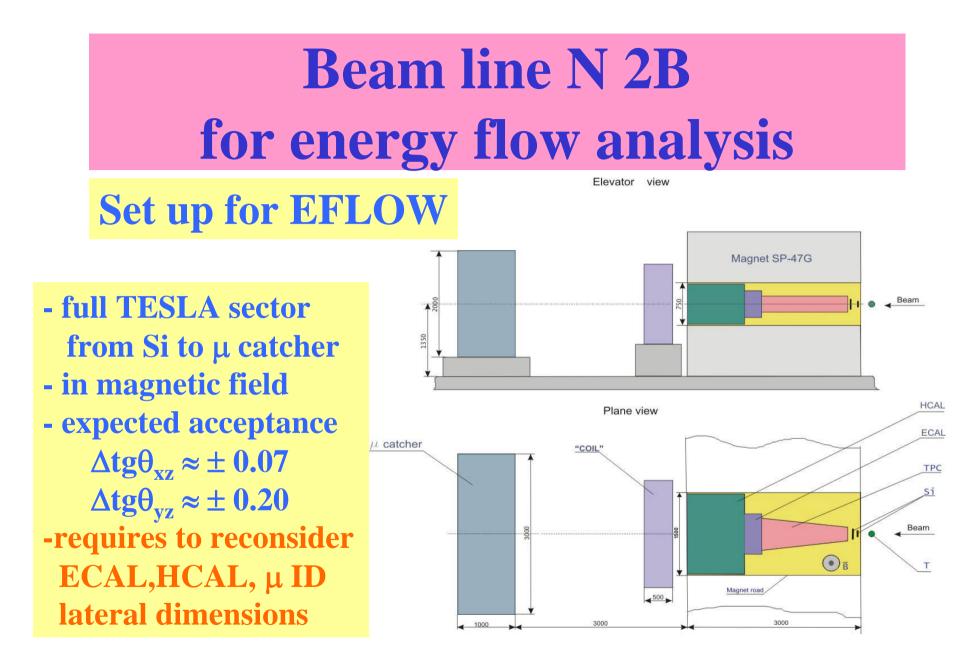
70 GeV proton beam is also available

Beam monitoring system

 $S_1 \div S_4$, A_1 , A_2 - scintillation counters PC₁, PC₂ - proportional chambers H₁, H₂ - scintillation hodoscopes C₁, C₂ - threshold cherenkov counters D₁, D₂ - differential cherenkov counters S_{TOF} - time-of-flight scintillation counter

Own DAQ system Trigger signals are available Beam experts are available

Zone sizes:


- Beam height above flow 2.15 m
- 5/40 ton crane hook height 8 m
- Horizontal space +/-3 m
- Longitudinal space 10 m

Two counting rooms (32 m2 each) above zone are available with local net and internet connections

Part of test zone Beam axis is indicated by tube

Antipov's SIGMA magnet

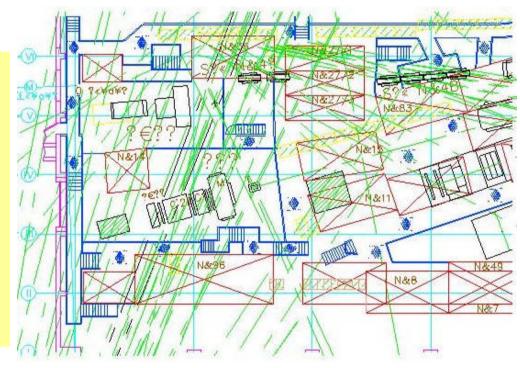
Beam line N 2B for energy flow analysis

Magnet parameters

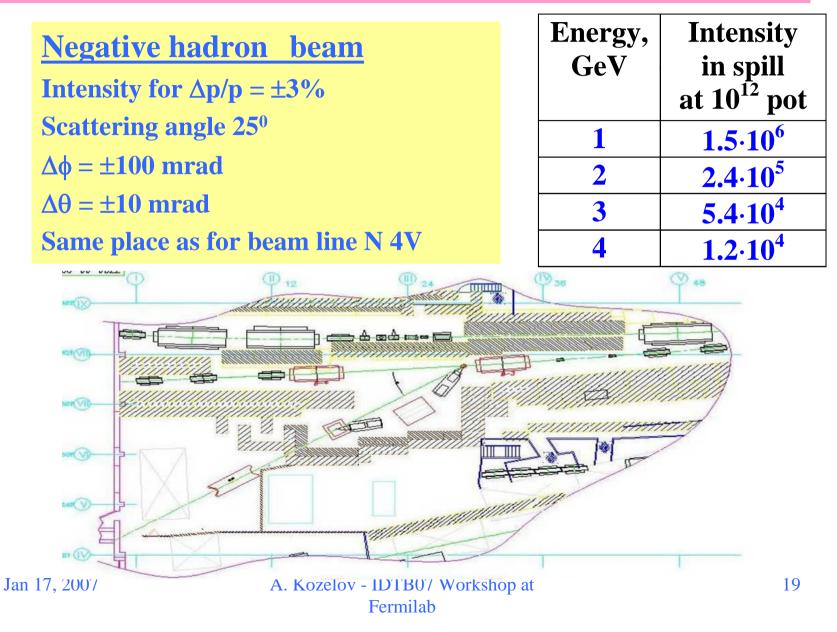
Parameter	Value	Comment
Aperture, cm ²	75x150	-
Effective length, cm	300	300 for ILC
Magnetic field, T·m	4	12 for ILC

Beam line N 2B for energy flow analysis

Possible measurements


- inelastic π ⁻ N interactions at (40-55) GeV/c with at least 2 particles within the set up acceptance - π ⁻ $p \rightarrow \pi^0$ n, π ⁻ $p \rightarrow \eta$ n reactions (~(10⁻³-10⁻⁴) of σ_{tot}) to study the ECAL $\gamma\gamma$ separation $\theta_{\gamma\gamma,min} = 2m_m/E_m$

Beam line N 4V

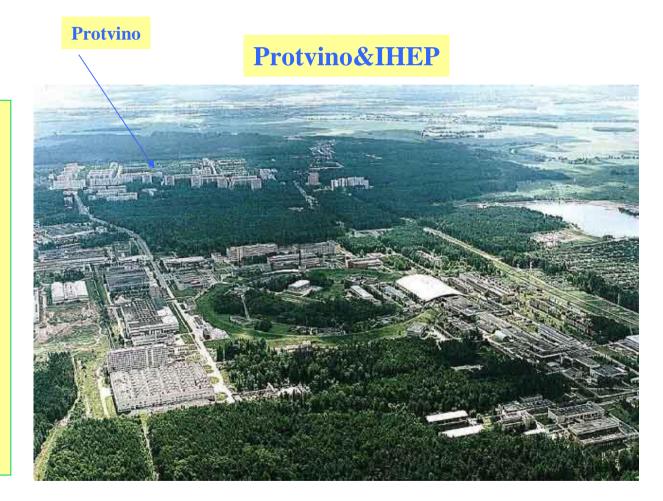

Negative hadron beam

- 20 - 40 GeV/c -intensity up to 10⁷ pps (38 GeV/c at 10¹² pot)

Electron beam - 3 – 15 GeV/c -intensity up to 2·10⁴ eps (10 GeV/c at 10¹² pot) - Electron tagging system is also possible - Beam spot, ∅ ~ 3 cm

Beam line for soft hadrons

Universal beam line N 22


•**Proton beam:** up to 70 GeV/c , $I = 10^6 - 10^{10}$ pps

• Secondary hadron beam negative: 7 - 60 GeV/c, I < 6.10⁸ pps positive : 7 - 60 GeV/c, I < 10¹⁰ pps

• electron/positron beam: 7 – 40 GeV/c , I < $5 \cdot 10^5$ pps

General questions

Protvino is small town, ~40000 people Since 1963 ~100 km south from Moscow Connections by bus, ~1.5-2 hours IHEP was base of Protvino, ~0.5 km from town

Protvino town

Some views

From Protva river

Jan 17, 2007

General questions

One year multi entry visas exist for any country

You are welcome !!

Protva hotel - 200 places Costs Double lux 24 Euro Single lux 21 Euro Single room 13 Euro Double room 10 Euro

All with WC, Shower, TV and refreegirator

Conclusion

Protvino is ideal site for ILC beam tests

1. Suitable range of particle momentum

e⁻ : (1-45) GeV/c h^{+/-} : (1-60) GeV/c μ⁻ : (1-55) GeV/c

2. Variety of test beam zones are available

You are welcome !

Beam time is available ~2 months/year (April, Nov-Dec)

Contact person: Dr. Vladimir Ammosov e-maill: ammosov@mail.ihep.ru