# Compilation of World Wide Beam Test Facilities



Marcel Demarteau Fermilab

January 17, 2007

### Acknowledgements

- Many thanks to the speakers for their excellent overview presentations and for their help in preparing this compilation.
  - Fermilab: Erik Ramberg
  - SLAC: Carsten Hast
  - KEK: Osamu Tajima
  - LBL: Devis Contarato
  - IHEP, Beijing: Li Jia-Cai
  - IHEP, Protvino: Alexander Kozelov
  - DESY: Ingrid-Maria Gregor
  - CERN: Christoph Rembser
  - EUDET: Felix Sefkow
- Advance apologies for my misunderstandings and all the mistakes I made summarizing the facilities

# **ILC Challenges**

- Many detector technologies not established
  - Vertex detector technologies: SOI, MAPS, 3D, CPCCD, FPCCD, DEPFET, …
  - EM Calorimetry: Silicon-Tungsten based fine pixels
  - HAD Calorimetry: analogue/digital with RPC, GEM, MicroMegas, Scintillator readout
  - Forward Calorimetry: BeamCal and LumCal
  - TPC: Gas amplification systems, GEM, Micromegas and readout
  - Muon Detection: MPPC readout
- Simulation
  - Development of PFA algorithms and modeling of shower simulations in Monte Carlos and validation of Particle Flow algorithms
- ILC Parameters
  - Magnetic fields up to 5 Tesla
  - Power consumption requirements
  - EMI, Material Budget, Integrated Tracking
- Many of these issues can only be addressed through beam tests
- This is a compilation of beam test facilities with a look towards requests from the user community for further enhancements

# **DESY Beam Test Facility**

- DESY provides three test beam lines
  - No beam optics
    - Only momentum selection via magnet
  - 1-6 GeV/c electrons
  - Repetition rate 12.5 Hz
  - Bunch length 30 ps
  - Two conversion targets (Cu, Al)

| Rates  | Target   |         |  |
|--------|----------|---------|--|
| Energy | 3mm Cu   | 1mm Cu  |  |
| 1 GeV  | ~330 Hz  | ~ 220Hz |  |
| 2 GeV  | ~500 Hz  | ~330 Hz |  |
| 3 GeV  | ~1000 Hz | ~660 Hz |  |
| 5 GeV  | ~500 Hz  | ~330 Hz |  |
| 6 GeV  | ~250 Hz  | ~160 Hz |  |

- Availability: continuous?
- User brings own DAQ
- External beam diagnostics: none



### **DESY Beam Test Facility Plans**

Area T24 will be dedicated to EUDET facility

#### Improvements to facility:

- First half of 2008: long shutdown
  - New Vacuum System
  - New Control System
- No further improvements foreseen

#### Availability of test beam area

- Available on continuous basis to users
- Currently no conflicts between users foreseen
- Impact of PETRA3 on test beam under evaluation

### **IHEP-Beijing Beam Test Facility**

- IHEP-Beijing provides three test beam lines
  - Two primary beam lines E1 and E2
    - 1.1-1.5 GeV electrons/positrons
    - Repetition rate 25 Hz
    - Bunch length 1.2 ns
  - Secondary beam line E3
    - **0.4-1.2** *G*eV/c, e<sup>±</sup>, π<sup>±</sup>, p

Repetition rate 1.5 Hz (single particle)

- External beam diagnostics
  - TOF system
  - Threshold Č-counter
  - MWPC with 50% dE/dx resolution



### **IHEP-Beijing Beam Test Facility Plans**

- Alteration of the E2 Line to extend vacuum pipe to reduce particle multiplicity
- A New E3 Line in Hall 10
  - Enhancement of pion's intensity by shortening the decay length from 23m to 15m long
  - New optics for the new beam lines
    - Two dipole and two quadrupole magnets
  - New hodoscopes H1-H3, three triggers S1-S3 and a new Cherenkov counter
    - Improved particle track reconstruction
    - Improved momentum resolution
    - Better particle id.
- Availability of test beam area
  - In 2007 dedicated to calibration of Yangbajing Airshower Core detectors and an experiment of the Electron Scattering.
  - A six month shut down period follows for upgrade
  - Available on continuous basis to users starting March '08

### **SLAC Beam Test Facility**

- SLAC provides one beam line to End Station A (ESA)
  - 28.5 GeV primary electron beam, 3.5 x 10<sup>10</sup> e<sup>-</sup>/pulse at 10 Hz
  - Secondary beam accepted into A-line at 0.5 deg production angle
    - 1.0 20 GeV
    - Momentum analyzed to <1%</p>
    - PID through time-of-flight and threshold Cherenkov counters
      - At 13 GeV: 50% π<sup>+</sup>, 50% e<sup>+</sup>, 0.4% protons, <1% K<sup>+</sup>
- Many machine and MDI related tests being carried out at ESA
  - Collimator design, wakefields
  - Energy spectrometer, BPM's
  - Bunch length diagnostics, …
- 2007-2008
  - Running parasitic to PEP II



# **SLAC Beam Test Facility Plans**

- PEP II will end operation at the end of 2008; LCLS will start operating in 2009
- Current plans for ESA undetermined
- As follow-up to FFTF (Final Focus Test Facility) SLAC is pursuing SABER (South Arc Beam Experiment Region)
  - A proposed facility for experiments requiring compressed, focused, high-energy beams of electrons or positrons
  - To be built in the Instrument Section in the SLC South Arc tunnel

#### SABER program

- Plasma Wakefield Acceleration
- Dielectric Wakefield Acceleration
- Short Pulse Photon Science
- **-** ...
- Using
  - High Beam Energy
  - Short Bunch Length
  - High Peak Current
  - Power Density



### **SLAC Beam Test Facility Plans**

- SABER available for test beams in south arc
  - Space limited for larger scale efforts in SABER
  - 28.5 GeV primary electron beam, no hadrons for secondary beams
- Possibilities for beam at ESA
  - High energy beam 28.5 GeV available when LCLS not running; will compete with SABER for pulses; needs extension of SABER bypass line into ESA
  - Use LCLS beam with pulsed magnets to have 10Hz e<sup>-</sup> beam to ESA Energy reach reduced to 5 - 14 GeV
  - Parasitic running from halo of LCLS; allows running all the time at 120 Hz
- Awaiting decision by the laboratory based on feedback from user community

### **KEK Beam Test Facility Plans**

- Currently no beam tests possible at KEK
- Working on implementing "Fuji Test Beam Line"
  - Bremsstrahlung photons from beam v.s. residual-gas scattering
    1.6x105 photons/sec
  - Photons are converted in Tungsten converter, 3mm thick,  $\sim 1X_0$
  - Converted particles are extracted to experimental area outside of KEKB tunnel
- Expected performance
  - > 100 electrons/sec (continuously)
  - momentum range: 0.5 3.4 GeV/c
  - Momentum resolution ~ 0.4%
  - Spot size +/- 1cm
- Anticipated startup date September '07



### **J-PARC Beam Test Facility Plans**

- "Option 3" aimed at providing a beam test facility at the 50 GeV PS at J-PARC
- Currently no concrete plans
- Earliest possible availability is fall 2009



# **LBNL Beam Test Facility**

- Advanced Light source (ALS)
  - Beam test line extracted from injection booster
  - e<sup>-</sup> at 1.5 GeV at 1 Hz
  - Pixel telescope being provided
- Laser Optics and Accelerator Systems Integrated Studies (LOASIS)
  - 1 GeV e<sup>-</sup>, with possibility for tuning beam energy from ~50 MeV to 1 GeV
  - Plans for upgrade to 10 GeV
- 88-inch cyclotron
  - Dedicated beam-lines for proton (heavy ion) and neutron irradiations
  - $E_p$  up to 55 MeV,  $E_n < 30$  MeV
  - Tunable flux
    typical ~1×10<sup>8</sup>/cm<sup>2</sup>/s





# **LBNL Beam Test Facility Plans**

- Neutron line at 88-inch cyclotron recently developed and commissioned
- Feedback from user community appreciated

### **IHEP-Protvino Beam Test Facility**

- At least four beam lines available
- Beam parameters:
  - cycle time: 10 s
  - spill time: 1.8 s
  - intensity: ~ 10<sup>13</sup> p/cycle
  - number of bunches: 30
  - bunch length: 40 ns, spacing 160 ns
- High intensity and low intensity beams available



| Beamlines      | N2B                                               | N4V                                                          | Soft Hadron                   | N22                            |
|----------------|---------------------------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------------|
| Momentum Range | e: 1 - 45 GeV<br>μ: 33 - 55 GeV<br>h: 33 - 55 GeV | e: 3 - 15 GeV h: < 4 GeV<br>μ: 20 - 40 GeV<br>h: 20 - 40 GeV |                               | e: 7 - 40 GeV<br>h: 1 - 70 GeV |
| Spill Duration | 1.8 s                                             | 1.8 s                                                        | 1.8 s                         | 1.8 s                          |
| Duty Cycle     | 1 spill / 10 s                                    | 1 spill / 10 s                                               | 1 spill / 10 s                | 1 spill / 10 s                 |
| Intensity      | ~ 10 <sup>7</sup> part./spill                     | ~ 10 <sup>7</sup> part./spill                                | ~ 10 <sup>7</sup> part./spill | ~ 10 <sup>7</sup> part./spill  |

Worldwide Test Beam Facilities, IDTB07, Jan. 17, 2007 -- M. Demarteau

# **IHEP-Protvino N2B Beam Line**

#### N2B to be dedicated to ILC slice tests

| Electron Beam  |                                                  |         |               |       |
|----------------|--------------------------------------------------|---------|---------------|-------|
| Energy,<br>GeV | Intensity<br>in spill<br>on 10 <sup>12</sup> pot | Content |               |       |
|                |                                                  | e (%)   | μ ( <b>%)</b> | h (%) |
| 1              | <b>4.10</b> <sup>2</sup>                         | 82      | 10            | 5     |
| 2              | <b>1.10</b> <sup>3</sup>                         | 77      | 15            | 8     |
| 5              | <b>2.10</b> <sup>3</sup>                         | 50      | 32            | 18    |
| 10             | <b>5.10</b> <sup>3</sup>                         | 34      | 35            | 30    |
| 27             | <b>4</b> ·10 <sup>4</sup>                        | 77      | 9             | 13    |
| 45             | <b>2</b> ⋅10 <sup>4</sup>                        | 91      | 4             | 5     |

| Hadron Beam (33-55 GeV) |         |  |
|-------------------------|---------|--|
| Particle Type           | Content |  |
| π-                      | 96.4 %  |  |
| μ                       | 1.0 %   |  |
| k⁻                      | 2.3 %   |  |
| p-                      | 0.3 %   |  |

Plan for full TESLA sector test from Si to muon tail catcher in magnetic field

- 300 cm long
- ∫ B dl = 4 Tm



Elevator view

# **CERN Beam Test Facilities**

Two areas at two machines, with four beam lines each: North area at the SPS and East area at the PS

#### **PS** Area:

| PS Beamlines   |                                                                            |
|----------------|----------------------------------------------------------------------------|
| Momentum Range | 1 - 3.6 GeV (T11)<br>1 - 7 GeV (T10)<br>1 - 10 GeV (T7)<br>1 - 15 GeV (T9) |
| Spill Duration | 400 ms                                                                     |
| Duty Cycle     | 2 spills / 16.8 s                                                          |
| Particle Type  | electrons<br>hadrons<br>muons                                              |
| Intensity      | 1 - 2 10 <sup>6</sup> part. /spill                                         |



### **CERN Beam Test Facilities**

#### SPS Area:

| SPS Beamlines  |                                              |                      |
|----------------|----------------------------------------------|----------------------|
| Momentum Range | 10 - 400 GeV<br>10 - 400 GeV<br>10 - 400 GeV | (H2)<br>(H4)<br>(H8) |
| Spill Duration | 4.8 – 9.8 s                                  | (חס)                 |
| Duty Cycle     | 1 spill / 14 – 40 s                          |                      |
| Particle Type  | electrons<br>hadrons<br>muons                |                      |
| Intensity      | ~ 10 <sup>8</sup> part./spill                |                      |



- Beamline configurations
  - Beamlines share targets (H2/H4, H6/H8)
    - Beam use coupled
  - Up to three user areas per beamline
  - H4 can be set up for very clean electron beam up to 300 GeV
  - H2 and H8 have low energy (2 10 GeV) tertiary beams

# **CERN Irradiation Facilities**

- Gamma Irradiation Facility (GIF), former SPS West Area
  - Cs137 source, 662 keV photons, <720 GBq</li>
  - 2007 may be the last year of GIF operation; new facility under discussion
- Proton/Neutron irradiation facilities, PS East Hall
  - 24 GeV/c primary protons from PS
    - 2\*2cm<sup>2</sup> beam spot
    - 2.5\*10<sup>11</sup> protons/spill
- Neutrons from beam dump, spectrum similar to LHC environment

### **CERN Beam Test Facility Plans**

#### **2007**:

- PS test beams: May 2 Nov 12 (28 weeks)
- requested beam time (T7,T9-T11)
  - ~43% LHC & LHC upgrade
  - ~12% external users
- SPS test beams: May 25 Nov 12 (23.5 weeks)
- requested beam time (H2-H8):
  - ~52% LHC & LHC upgrade
  - ~35% external users
- PS/SPS will start operating as LHC injectors on Nov. 12

#### **2008**:

- Heavily dependent on LHC status and LHC beam requests
- LHC has absolute highest priority for SPS beam
- Second highest priority is CNGS

### **Fermilab Beam Test Facilities**

- The old Fermilab Meson Test Beam Facility (MTBF)
  - Could not deliver a pion beam lower than 4 GeV
  - Electrons had a low flux because of significant material in the beam
- Motivated by the ILC community, the laboratory designed a new beamline that was completed a few weeks ago
- Also motivated by the ILC community, revised the spill structure and restated the program impact



- SY120 beam can impact the program at the 5% level following a flexible algorithm
- Spill structures:
  - One 4 second spill every minute, for 12 hours a day
  - Two 1 second spills every minute, for 12 hours a day
  - One 4 second spill every two minutes, 24 hours a day (this is implemented if MIPP is running in MCenter)

# **Fermilab Beam Test Facility**

Hadron

**Enhancement** 

25

6.4

2.5

Electron

**Enhancement** 

~90

14

6.3

Moving the target to MT3 (L=1273-1388' goes to L= 451-566') reduces the decay length for pions

Energy

(GeV)

4

8

16

- Reduce the material in beamline
  - From 17.8 % X<sub>0</sub> to ~ 3.4% X<sub>0</sub>

| Energy<br>(GeV) | Gain due to<br>Pion Decay<br>factor |
|-----------------|-------------------------------------|
| 1               | 90                                  |
| 2               | 9.2                                 |
| 4               | 3.0                                 |
| 8               | 1.8                                 |
| 16              | 1.3                                 |
| 33              | 1.2                                 |
| 66              | 1.1                                 |

- New Design has larger momentum (from from ¾% to 2%) and angular acceptance available
- Commissioning of new beam line has started; low energy beam commissioning imminent

| Energy<br>(GeV) | Present Hadron Rate<br>MT6SC2 per 1E12<br>Protons | Estimated Rate<br>in New Design<br>(dp/p 2%) |
|-----------------|---------------------------------------------------|----------------------------------------------|
| 1               |                                                   | ~1500                                        |
| 2               |                                                   | ~50K                                         |
| 4               | ~700                                              | ~200K                                        |
| 8               | ~5K                                               | ~1.5M                                        |
| 16              | ~20K                                              | ~4M                                          |

### **Possible Enhancement of Fermilab Beam Test**

- Further enhancements of the ILC R&D activities could be explored, with a concurrent scientific program, which could benefit the ILC community
- MCenter beam line, which houses the MIPP experiment, is currently not scheduled
- MCenter beamline
  - Beamline with excellent characteristics
    - Six beam species (p<sup>±</sup>,K<sup>±</sup>,p<sup>±</sup>) from 1 -- 85 GeV/c
  - Excellent particle id capabilities
- Experimental setup
  - Could allow for better understanding of hadron-nucleus interactions, which could benefit our understanding of hadronic shower development, which is currently poorly understood
    - Nuclei of interest that can be measured with an upgraded MIPP

H<sub>2</sub>, D<sub>2</sub>, Li, Be, B, C, N<sub>2</sub>, O<sub>2</sub>, Mg, Al, Si, P, S, Ar, K, Ca, Fe, Ni, Cu, Zn, Nb, Ag, Sn, W, Pt, Au, Hg, Pb, Bi, U, Na, Ti,V, Cr, Mn, Mo, I, Cd, Cs, Ba

■ Moreover, experimental setup with the full spectrometer would allow for a tagged neutron beam from fully constrained reaction pp → p,n, $\pi^+$ 



# **EUDET Beam Test Infrastructure**

- EUDET not a beam test facility per sé; it provides infrastructure for beam test facilities anywhere in the world
- Construction and initial tests at DESY with possibility to move it elsewhere
- Activity organized in 5 tasks
  - Large bore magnet (on loan from KEK)
    - SC high field magnet: 1.2 T
    - Large bore 80 cm diameter
    - Thin cryostat (0.2 X<sub>0</sub>)
  - Environmental support
  - Pixel beam telescope
    - Flexible geometry (for diff. beams)
    - I μm precision on device under test
    - Based on MAPS technology
  - DAQ
  - Evaluation (integration of pixel detector test devices)
- Many experiments being carried out
  - TPC: field cage, end plate interface, readout, Timepix chip
  - Si tracking
  - Calorimetry and readout





# **Testbeam Availability**

| Laboratory    | Energy Range                                     | Particles                                             | Availability                                  |
|---------------|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|
| CERN PS       | 1 - 15 GeV                                       | e, h, μ                                               | LHC absolute priority                         |
| CERN SPS      | 10 - 400 GeV                                     | e, h, μ                                               | LHC absolute priority                         |
| DESY          | 1 - 6.5 GeV                                      | e                                                     | > 3 months per year                           |
| Fermilab      | 1-120                                            | e, π, K, p; μ                                         | continuous (5%), except summer shutdown       |
| Frascati      | 25-750 MeV                                       | е                                                     | 6 months per year                             |
| IHEP Beijing  | 1.1-1.5 GeV (primary)<br>0.4-1.2 GeV (secondary) | e <sup>±</sup><br>e <sup>±</sup> , π <sup>±</sup> , p | Continuous after March 2008                   |
| IHEP Protvino | 1-45 GeV                                         | e, π, K, p; μ                                         | one month, twice per year                     |
| J-PARC        |                                                  |                                                       | Available in 2009                             |
| KEK Fuji      | 0.5 - 3.4 GeV                                    | е                                                     | Available fall 2007, 240 days/year            |
| LBNL          | 1.5 GeV<br>< 55 MeV<br>< 30 MeV                  | e<br>p<br>n                                           | Continuous                                    |
| SLAC          | 28.5 GeV (primary)<br>1.0 - 20 GeV (secondary)   | e<br>e <sup>±</sup> , p <sup>±</sup> , p              | Parasitic to Pep II, non-concurrent with LCLS |

### **Testbeam Parameters**

| Laboratory    | Primary<br>Beam          | #<br>Beamlines | ∆p/p        | Rep. Rate<br>(Hz) | Diagnostics                             |
|---------------|--------------------------|----------------|-------------|-------------------|-----------------------------------------|
| CERN PS       | 1 - 15 GeV               | 4              |             |                   | Cherenkov, TOF, MWPC                    |
| CERN SPS      | 10 - 400 GeV             | 4              |             |                   | Cherenkov, TOF, MWPC                    |
| DESY          | e <sup>-</sup> / 7 GeV   | 3              | 1% ?        | 12.5              | Pixels                                  |
| Fermilab      | p / 120 GeV              | 1              | 1% > 10 GeV |                   | Cherenkov, TOF, MWPC, Si Strips, Pixels |
| Frascati      | 25-750 MeV               | 1              |             |                   |                                         |
| IHEP Beijing  | e <sup>-</sup> / 1.5 GeV | 3              | <1%<br>1%   | 25<br>1.5         | Cherenkov, TOF, MWPC                    |
| IHEP Protvino | 1-45 GeV                 | 4              |             |                   | Ckov, Diff. Ckov, TOF, MWPC             |
| J-PARC        |                          |                |             |                   |                                         |
| KEK Fuji      | 8 GeV                    | 1              | 0.4%        | 100.0             |                                         |
| LBNL          | e / 1.5 GeV              | 1              |             | 1.0               | Pixel telescope                         |
| SLAC          | 28.5 GeV                 | 1              | 0.2%        | 10.0              |                                         |

# Summary

- Detector R&D for the ILC is critical to extract the physics from the machine
- The laboratories have demonstrated to be very supportive of the requests of the user community
- The user community should formulate clearly its needs and provide feedback to the available facilities
  - Some facilities may need a strong user support to keep the facility operational
  - Plans of the facilities can only be formulated through input from the user community
- Overall, a few, but excellent facilities are available to the community with strong support for ILC detector R&D