Hadronic Shower Simulation

Dennis Wright ILC Detector Test Beam Workshop 19 January 2007

Outline

- Selected highlights of the Hadronic Shower Simulation Workshop at Fermilab (September 2006)
 - comparison of code features
 - shower shape studies
 - Grand Validation
- Improving the codes: where do we go from here?
 - ILC detector needs
 - areas for improvement
 - new sources of data

Comparison of Code Features

- Slides by Gregg McKinney (presented in summary talk by Laurie Waters)
 - comparison of features for five physics simulation codes: FLUKA, GEANT4, MARS, MCNPX, PHITS
 - covers: general information, geometry, physics, sources, tallies/scoring and variance reduction

General information for various all-particle transport codes

General	MCNPX	GEANT4	FLUKA	MARS	PHITS
Version	2.5.0	8.1 p1	2005	15	2.09
Lab. Affiliation	LANL	CERN ESA IN2P3 PPARC INFN LIP KEK SLAC TRIUMF	CERN INFN	FNAL	JAEA RIST GSI Chalmers Univ.
Language	Fortran 90/C	C++	Fortran 77	Fortran 95/C	Fortran 77
Cost	Free	Free	Free	Free	Free
Release Format	Source & binary	Source & binary	Source & binary	Binary	Source & binary
Availability Conditions	RSICC Beta test team	Open web None		User's Agreement	
User Manual	470 pages	280 pages	387 pages	150 pages	176 pages
Users	~2000	~2000	~1000	~300	220
Web Site	mcnpx.lanl.gov	cern.ch/geant4	www.fluka.org	www-ap.fnal. gov/MARS	Under const.
Workshops	~7/year	~4/year	~1/year	~2/year	~1/year
Input Format	Free	C++ main Fixed geometry	Fixed or free	Free	Free
Input Cards	~120	N/A	~85	0 to 100	~100
Parallel Execution	Yes	Yes	Yes	Yes	Yes

Geometry Capabilities

Geometry	MCNPX	GEANT4	FLUKA	MARS	PHITS
Description	MCNP-based	Solids (CSG, Boolean, some BREP/STEP)	Combinatorial	Fixed shapes or MCNP-based	MCNP-based MORSE-based
Extensions Twisted Nested Repeated Voxel Beflections	No Yes (universes) Yes Lattice (rec, hex)	Yes Yes (logical vol.) Yes Yes (rec, cyl)	No No Yes Yes	No Yes Yes Yes	No Yes (universes) Yes Lattice (rec, hex)
Viewer Debugger	Built-in: 2-D Interactive X-Windows External: Vised Moritz	Built-in: 3-D Interactive OpenGL OpenInventor RayTracer External: WIRED VRML DAWN Overlap tools	Built-in: None External: Custom (X11) Debugger built in	Built-in: 2-D Interactive Tcl/Tl 3-D Interactive OpenGL External: Built-in	Built-in: 2,3-D Command PS via Angel External: Angel PS
Setup GUI	Vised Moritz	GGE	No	Tcl/Tl	No
CAD	STEP via GUI	STEP via Tool	No	No	No
Fields (E/B)	2.6.D	Yes	Yes	Yes	Yes
Moving	2.6.D	Yes	Yes	No	Yes

Physics Capabilities

Physics	MCNPX	GEANT4	FLUKA	MARS	PHITS
Particles	34	68	68	41	38
Charged particles Energy loss Scatter Straggling XTR/Cheren.	CSDA Bethe-Bloch Rossi Vavilov No	CSDA Bethe-Bloch Lewis Urban Yes	CSDA Bethe-Bloch Moliere improved Custom No/yes	CSDA Bethe-Bloch Moliere improved Custom No	CSDA Bethe-Bloch Moliere Vavilov No
Baryons Neutron Low High Proton Low High Other	Cont. (ENDF) Models Cont. (ENDF) Models Model List: Bertini ISABEL CEM INCL FLUKA89>3 GeV LAQGSM (2.6.C)	Cont. (ENDF) Models Models Model list: Hadron-nucleous GHEISHA* INUCL(Bertini) BIC CHIPS QGS/FTF>8 GeV	Multigroup(72) Models Models Model list: PEANUT(GINC) +DPM+Glauber	Cont. (ENDF) Models Models Model list: Custom CEM LAQGSM DPMJET	Cont. (ENDF) Models Models Model list: Bertini JAM>3 GeV
Leptons Electrons Muon Neutrino Other	ITS 3.0 CSDA/decay Production Decay	Models/EEDL, EADL Models Production Decay	Custom Models Models Decay	Custom Models Models Models	ITS 3.0 CSDA/decay Models Models

Physics Capabilities, cont.

Mesons	Models	Models	Models	Models	Models
Photons Optical x-ray/g Photonuclear	No ITS 3.0 Libraries (IAEA) CEM	Yes Models or EPDL97, EADL CHIPS	Yes Custom+EPDL97 PEANUT VMDM	No Custom Custom CEM	No ITS 3.0 No
Ions	ISABEL LAQGSM (2.6.C)	AAM EDM BLIC	RQMD-2.4 DPMJET-3	LAQGSM	JQMD JAMQMD > 3 GeV/u
Delayed	n,γ (2.6.C)	α,β,γ?	β,γ	Y	n

Shower Shape Comparisons

- Data from ATLAS and CMS test beams
 - almost all data is longitudinal profile information
- Transverse profile information would be very useful
- Data compared to two physics lists
 - LHEP
 - collection of low and high energy parameterized models (descendants of GHEISHA)
 - QGSP
 - mostly theory-based models which obey conservation

Atlas (HEC)

Ratio e/π ; GEANT4 v.8.0, 20 μ m cut

Atlas (HEC)

Relative response, GEANT4 v.8.0, 20 μ m cut

Atlas (HEC)

Fraction of energy in layers: GEANT4 v.8.0, 20 μ m cut

300 GeV pions, leaving MIP in ECAL and L0.

Inter-comparison with Other Codes

- 7 validation tests proposed for Hadronic Shower Simulation Workshop at Fermilab, September 06
 - covered wide energy range
 - head-to-head comparison of (5-6) simulation codes for each test
 - data sets agreed upon beforehand
 - voluntary participation
- Due to short time scale, not all tasks could be completed
- Agreed to make this a regular exercise

Task 1: 12.9 GeV/c p on Al

Task 1: 12.9 GeV/c p on Al

Task2a: π^+ from 158 GeV/c p on C

Fermilab

S. Striganov

Task2a: π^{-} from 158 GeV/c p on C

Fermilab

S. Striganov

Task3: p + A1 at 67 GeV/c -> π^+X red: Geant4, blue: MARS, green: PHITS

Task3: p + Al at 67 GeV/c -> π^-X red: Geant4, blue: MARS, green: PHITS

Task 3: p + Al at 67 GeV/c -> p X red: Geant4, blue: MARS, green: PHITS

Task4: PAL with Geant4 prediction

Task 5: Total Energy in a Cu Absorber

Fermilab

S. Striganov

Task6: π -in Fe-Scint Calorimeter

Task 7: Energy Deposited in W Rod

What ILC Detectors Require from Hadronic Codes (1)

- Detector conditions:
 - high jet density
 - high granularity
 - excellent hermeticity
- Implied requirements for simulation code:
 - good shower shape reproduction
 - good energy and baryon conservation
 - proper handling of transport and interaction of neutral hadrons

What ILC Detectors Require from Hadronic Codes (2)

- Shower shapes:
 - lateral distribution most important
 - dominated by EM processes, but hadronic code is important. Must pay attention to:
 - diffraction, pomeron trajectory parameters
 - ~100 MeV protons, π^0 fraction, neutrons below 10 MeV
- Energy/momentum, baryon number conservation
 - detailed models handle these correctly, some fast parameterized models handle it only averaged over many events
- Interaction of neutrals
 - models must rely on isospin arguments (very little data)

Areas for Improvement of Hadronic Code

- Problem: large differences from one hadronic code to another
 - as it stands now, this imposes a significant limitation for ILC calorimeter design
- Solutions:
 - continued inter-code comparisons
 - more interaction between experts to exploit apparent complementarity in codes
 - more data for validation
 - thin target (especially in few GeV to 20 GeV range)
 - full setup (especially transverse shower shape)

Areas for Improvement of Hadronic Code

- Re-examine treatment of low energy protons (~100 MeV) and neutrons (< 10 MeV)
- Develop new model for the few GeV region
 - theoretically difficult region (between cascade and string)
 - some codes blend models to cover this range
- Improve models for incident neutral hadrons

– n, K⁰_L especially important for ILC detectors

New Sources of Data Required for Hadronic Code Validation

- Two kinds of validation required:
 - thin target
 - double differential, or invariant cross section measurements on thin, simple targets used to tune (and sometimes develop) models
 - choosing which of several models is best can only be done in this way
 - more data required (HARP, MIPP ?)
 - full setup
 - data from complete, or test beam detectors used as integration tests of all physics, but never for tuning
 - ATLAS and CMS longitudinal shower shape data available
 - transverse shower shape data would be very useful

MIPP Upgrade

- Will provide thin target data
 - event libraries, double differential cross sections
- Provide beams of 9 particle species
 - $\pi^{+/-}$, K^{+/-}, p, pbar, n, nbar, and K⁰_L
 - 90 GeV/c down to maybe 1 GeV/c
- 40 target nuclei
 - excellent coverage of periodic table
- Proposal made to FNAL PAC
 - deferred

Summary

- Hadronic Shower Simulation workshop brought together experts in many different simulation codes
- Inter-comparison of codes was very useful and will be continued
- Codes were shown to differ widely
 - this is a potential limiting problem for ILC detector design
- Ways forward:
 - more validation data
 - new models
 - re-examination of old models

Backup Slides

Task 3: p, p-bar from 67 GeV/c p on Al

Task 3: K⁺,K⁻ from 67 GeV/c p on Al

$p + A1 \rightarrow K^{+} X \text{ at } 67 \text{ GeV/c}$

The crucial elements of hadronic shower simulations (3) The *non-electromagnetic* shower component

A very large fraction (> 80%) of the calorimeter signal from this component is caused by *protons* and other nuclear fragments. Pions and other mips play, at best, only a minor role.

It is, therefore, crucial to simulate the processes in which these protons are being produced, as accurately as possible.

Nuclear breakup processes determine many aspects of the hadronic calorimeter performance

The crucial elements of hadronic shower simulations (4)

Where do these protons come from?

1) Nuclear spallation.

Spallation protons typically carry ~ 100 MeV kinetic energy. Their range is typically of the order of the thickness of sampling layers in hadron calorimeters.

2) Nuclear reactions induced by neutrons, e.g. (n,p) reactions

These protons have kinetic energies comparable to those of the (evaporation) neutrons that generated them (< 10 MeV) These neutrons outnumber spallation protons by an order of magnitude

Measurements of neutron production in hadronic showers: > 40 per GeV in some materials (NIM A252 (1986) 4)

The non-electromagnetic shower component (1)

How do we know that protons dominate non-em signal?

Because of the small hadronic signals

 (i.e. large e/h values) of calorimeters that are blind
 to these protons.

In quartz-fiber calorimeters (n = 1.46), only particles with $\beta > 0.69$ emit Čerenkov light, i.e. $E_{kin} > 0.2$ MeV for electrons and > 350 MeV for protons

2) Because of the absence of correlations between the signals from adjacent active layers in fine-sampling hadron calorimeters

The calorimeter from the example had 0.06 λ_{int} thick sampling layers. A mip would lose on average 12.7 MeV traversing these layers.