So what have we learned and what's the roadmap?

IDTB07 Workshop @ Fermilab Jan. 17 – 19, 2007 Jae Yu University of Texas at Arlington

The ultimate goal: To provide a roadmap document to world-wide beam test facility managers, the ILC leadership and funding agencies for ILC detector R&D test beams to be in synch with the time scale of the accelerator

Jan. 19, 2007

Charges

• Review and assess the current status, capabilities and plans of facilities

Testbeam Availability

Laboratory	Energy Range	Particles	Availability and plans
CERN PS	1 - 15 GeV	e, h, μ	LHC absolute priority
CERN SPS	10 - 400 GeV	e, h, μ	LHC absolute priority
DESY	1 - 6.5 GeV	e	> 3 months per year
Fermilab	1-120	e, π, K, p; μ	continuous (5%), except summer shutdown
Frascati	25-750 MeV	е	6 months per year
IHEP Beijing	1.1-1.5 GeV (primary) 0.4-1.2 GeV (secondary)	e [±] e [±] , π [±] , p	Continuous after March 2008 (unavailable before then)
IHEP Protvino	1-45 GeV	e, π, K, p; μ	one month, twice per year
J-PARC	Up to 3GeV	????	Available in 2009 earliest
KEK Fuji	0.5 - 3.4 GeV	е	Available fall 2007, 240 days/year
LBNL	1.5 GeV < 55 MeV < 30 MeV	e p n	Continuous
SLAC	28.5 GeV (primary) 1.0 - 20 GeV (secondary)	e e [±] , p [±] , p	Parasitic to Pep II, non-concurrent with LCLS

Demarteau

Testbeam Parameters

Laboratory	Primary Beam	# Beamlines	∆ p/ p	Rep. Rate (Hz)	Diagnostics
CERN PS	1 - 15 GeV	4			Cherenkov, TOF, MWPC
CERN SPS	10 - 400 GeV	4			Cherenkov, TOF, MWPC
DESY	e ⁻ /7 GeV	3	1% ?	12.5	Pixels
Fermilab	p / 120 GeV	1	1% > 10 GeV		Cherenkov, TOF, MWPC, Si Strips, Pixels
Frascati	25-750 MeV	1			
IHEP Beijing	e ⁻ / 1.5 GeV	3	<1% 1%	25 1.5	Cherenkov, TOF, MWPC
IHEP Protvino	1-45 GeV	4			Ckov, Diff. Ckov, TOF, MWPC
J-PARC					
KEK Fuji	8 GeV	1	0.4%	100.0	
LBNL	e ⁻ / 1.5 GeV	1		1.0	Pixel telescope
SLAC	28.5 GeV	1	0.2%	10.0	

Demarteau

Facilities

- Six low energy (<10GeV), electron facilities available at various time periods
- One med energy (<28GeV) available up to 2008 but uncertain beyond 2008
- Two med to low E (<45GeV) hadron facility
 - Limited availabilities once LHC turns on till the operation stabilizes
- Two high E hadron facilities available
 - SPS limited once LHC turns on till the operation stabilizes

Charges

- Review and assess the current status, capabilities and plans of facilities
- Review and assess the current and planned detector test beam activities
- Identify requirements for test beams to meet adequately the detector R&D needs

Defining R&D Requirements

- BI&MDI groups' requirements well understood
- Vertex groups begun defining their requirements
- Tracking groups
 - TPC performed beam test many times → Well positioned to clearly define the requirements
 - Si-based tracker needs are being formulated but can use better coordination
- Calorimeters and Muons
 - Requirements defined 3 years ago
 - Need to update given the anticipated change in focusses

Notable requests at this workshop

- Large bore, high field magnet (up to 5T)
 - VTX and tracking groups
- ILC beam time structure (1ms beam + 199ms blank)
 - VTX, TRK and CAL electronics
- Mimicking hadron jets
 - VTX, TRK and CAL
- Common DAQ hardware and software
- Common online and offline software
 - Reconstruction and analysis software

Point of Merge for Commonality

J. Yu

Notable requests at this workshop

- Large bore, high field magnet (up to 5T)
 - VTX and tracking groups
- ILC beam time structure (1ms beam + 199ms blank)
 VTX, TRK and CAL electronics
- Mimicking hadron jets
 - VTX, TRK and CAL
- Common DAQ hardware and software
- Common online and offline software
 - Reconstruction and analysis software
- Tagged neutral hadron beam

Detector R&D Needs

Detectors	N_Groups	Particle Species	P (GeV)	Magnet (Tesla)	N_Week s/yr	ILC time structure	Note
BI&MDI	2E+8ESA+1 F+2C+3BC	e	up to 100	Not specified	64		Mostly Iow E elec
Vertex	10	e, π, p; μ	up to 100	1 – 3	40	Yes	
Tracker	3TPC+ 2Si	e, π, p; μ	up to 100	1.5 - >3	20	Yes	
Cal*	5 ECALs+3 DHCALs + 5 AHCALs	e, n, π, K, p; μ	1 ->=120	Not specified	30 – 60	Yes	
Muon/TC MT	3	e, π, μ	1 >=120	Not specified	12		

*Note: Most calorimeter R&D activities world-wide are organized under CALICE collaboration.

Can some of these work concurrently?

Improving Simulation

- Critical for ILC detector R&D, especially for PFA development
- Current models do not describe data too well, not just shower shapes
- Data incorporated into the models are from 70s
 - Work ongoing to incorporate data after 70s
- Turn around time seems to be quite long (typically over a decade??)
 - How can this turn around time shortened to be useful for ILC?
- Do fresh new x-sec data help?
- What kind of data do we need?
 - Will neutral hadrons in a prototype detector helpful?

Neutral Hadrons?

- Do we need beam test with neutral hadrons?
 - Successful PFA means the HCAL measures neutral hadrons
 - Simulation models need some neutral hadron data
 - Hadron calorimeter calibration can use
 momentum tagged neutral hadrons
- Can we trigger effectively?
- What energy range?
 - Which ones do we need to understand better?

LHC Experiences

- Must understand and minimize sources of systematic uncertainties
- Geometry must be well understood in MC
- Improvement and validation of MC must be incorporated in wide range of phase space
 - Still observe ~10% differences between data and MC with all corrections incorporated in
- Took long~~ time to reach current level of understanding
 - CMS took 66 weeks/yr
 - Dedicated areas and floor spaces

Charges

- Review and assess the current status, capabilities and plans of facilities
- ✓ Review and assess the current and planned detector test beam activities
- ✓ Identify requirements for test beams to meet adequately the detector R&D needs
- \checkmark Plan and discuss for the future beam test activities
 - ✓ What have we learned from LHC beam tests?
 - ✓ What can we learn from existing ILC test beam activities?
 - ✓ What should the future beam test activities focus?
- Put together a team to write the ILC detector R&D test beam roadmap document which includes all sub-detector systems and the anticipated demands to facilities
 - This document should be completed by summer 2007

Roadmap Document Structure

- Introduction
 - Physics Needs
 - Time scale considered in the document
- Facilities
 - Summarize the current capabilities and plans
- Detector R&D → Organized by detector types
 - Current activities
 - Requirements
 - Plans
- Computing, Simulation and Software
- Summary of requests to facilities

Who will work on this?

- Facilities → D. MacFarlane
- Detector R&D
 - BI&MDI → M. Woods
 - VTX → Close link to the task force, C. Damerell
 - Tracker → M. Demarteau
 - A. Savoy-Navarro, M. Dixit and R. Settles all agreed to participate
 - Cal → F. Sefkow and J. Yu
 - Muon → H.E. Fisk
- Computing, Simulation and software → R.
 Poeschl
- Compilation of requests

 All primary contacts + WWTB contacts

On what time scale?

- First draft by LCWS 2007 at DESY
 - May 30 June 1, 2007
- Final draft within 1 mo of LCWS2007
 - Release the final draft by July 1, 2007
- Deliver the document to facility managers and ILC leadership on July 1, 2007

How do we communicate and organize?

- Establish a wiki web page for WWTB
 - Documentation updated directly on the web page
 - Current activities directly updated by the R&D groups
- How do we organize?
 - Common DAQ, software, etc?
 - Scheduling among ourselves?

Conclusions

- We have learned tremendously
 - On supplies and needs
 - Significant differences between simulation models and with data
 - No new data incorporation into model beyond 70's?
- Impressive performance of GDN that allows remote participation
- Impressive upgrades in FNAL facilities
 - And the will of managements to work with the community
- Lots of dialogues amongst ourselves and with FNAL colleagues has begun
- Work toward finding answers to the needs and supplies as focus shifts
- And communicate to facilities