Prospects for rare kaon decays

Evgueni Goudzovski

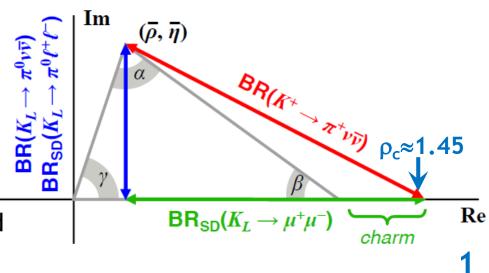
(University of Birmingham, United Kingdom)

Outline:

- 1) Rare kaon decays in the Standard Model and beyond
- 2) Status and plans at J-PARC: $K_L \rightarrow \pi^0 \nu \nu$
- 3) Status and plans at CERN: $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$
- 4) Summary

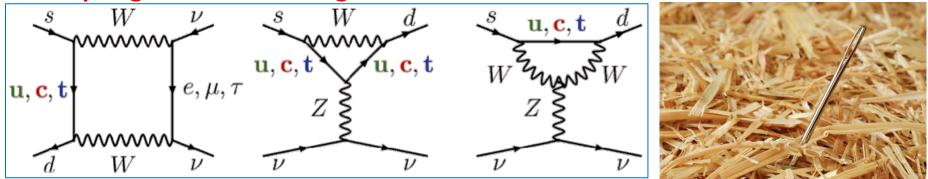
Topical group RF2: weak decays of light & strange quarks Conveners: Emilie Passemar (epassema@indiana.edu), Evgueni Goudzovski (goudzovs@cern.ch) Web: https://snowmass21.org/rare/weaksud Mailing list: SNOWMASS-RPF-02-LIGHT-QUARKS@FNAL.GOV Slack channel: rpf-02-light-quarks

Snowmass RPF kick-off meeting, 27 July 2020


Introduction: rare kaon decays

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR \times 10^{11}	Exp. $BR \times 10^{11}$
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< 28 (@ 90% CL)
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	< 38
$K^+ \to \pi^+ v \overline{v}$	90%	4%	8.4 ± 1.0	<17.8
$K_L \to \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 300

*Approx. error on LD-subtracted rate excluding parametric contributions


- FCNC processes dominated by Z-penguin and box diagrams.
- SM rates related to V_{CKM} with minimal non-parametric uncertainties.
- Golden modes $K \rightarrow \pi \nu \nu$: uniquely clean theoretically.
- Decays to charged leptons: affected by larger hadronic uncertainties.

$K \rightarrow \pi \nu \nu$ in the Standard Model

SM: Z-penguin and box diagrams

"Golden modes": ultra-rare decays, precise SM predictions.

- Aaximum CKM suppression: $\sim (m_t/m_W)^2 |V_{ts}^*V_{td}|$.
- ✤ No long-distance contributions from amplitudes with intermediate photons.
- Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.

Mode	Expected BR _{SM}	Experimental status	
$K^+ \rightarrow \pi^+ \nu \nu$	(8.4±1.0)×10 ⁻¹¹	BR<17.8×10 ⁻¹¹ at 90% CL (three candidates, NA62 2016+17 data)	
$K_L \rightarrow \pi^0 \nu \nu$	(3.4±0.6)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL (KOTO 2015 data)	

BR_{SM}: Buras et al., JHEP 1511 (2015) 33; tree-level determination of CKM elements

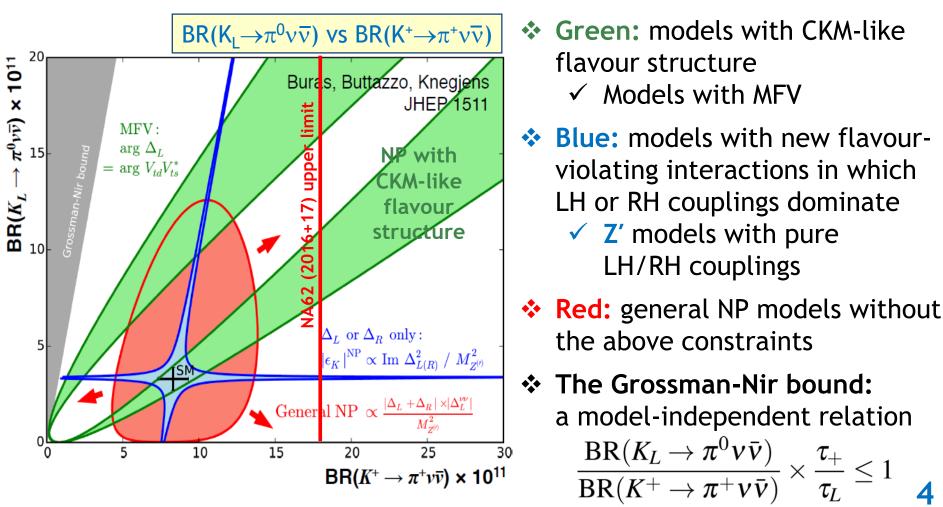
$K \rightarrow \pi \nu \nu$ and the unitarity triangle $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^\circ}\right]^{0.74}$ $\delta P_{c,u}$ |V_{cb} $P_c^{\mathrm{SD}}(X)$ $BR(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11}$. 9.9% X_t other $\cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^\circ}\right]^2$ 6.7 % Buras et al., JHEP 1511 (2015) 33 CKM unitarity triangle with kaons Dominant uncertainties: CKM parametric; intrinsic theory uncertainties are O(1%). excluded area has CL > 0.9 $K^+ \rightarrow \pi^+ \nu \nabla \nabla (NA62)$ 1.0 Work to decrease theory uncertainties th. uncertainty) [e.g. Christ et al., PRD 100 (2019) 114506]. Phase 2 0.5 $K \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO ✤ Measurements of both K⁺ and K₁ decays: Phase 0.0 a clean $sin(2\beta)$ measurement, an independent CKM unitarity test. -0.5 Complementarity to measurements in -1.0 the B-sector. Over-constraining the CKM Prospective study on rare Kaons matrix: reveal the nature of new physics. -1.5

-1.0

-0.5

0.0

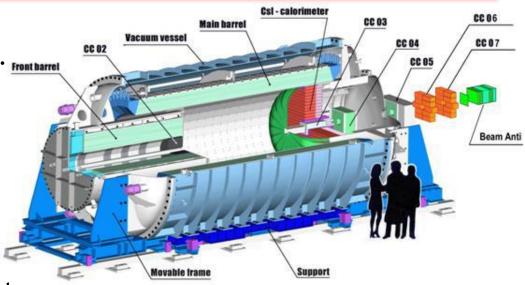
0.5

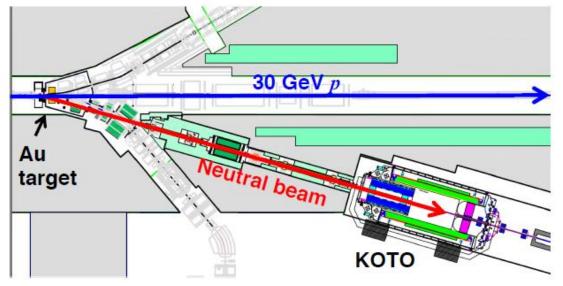

1.0

1.5

2.0

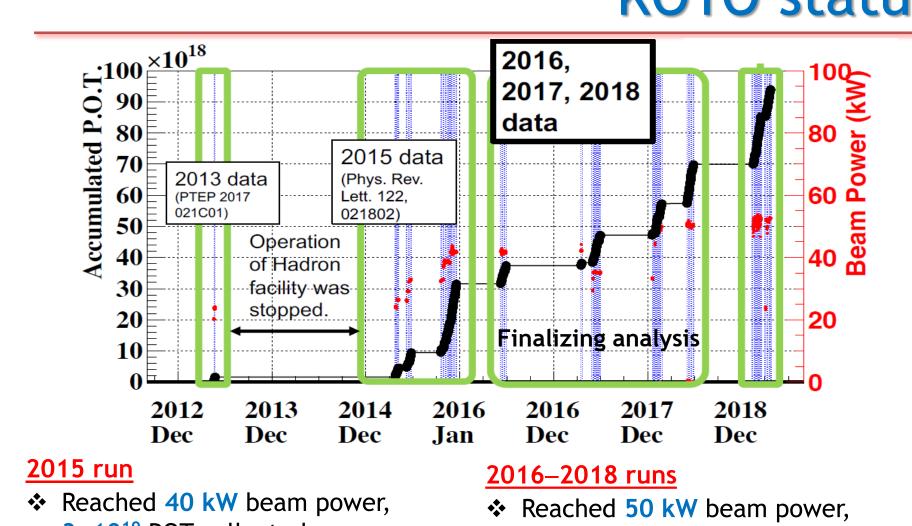
$K \rightarrow \pi \nu \nu$ and new physics


- ✤ Correlations between BSM contributions K⁺ and K_L BRs. [JHEP 1511 (2015) 166]
- Need to measure both K⁺ and K_L to discriminate among BSM scenarios.
- Correlations with other observables (ϵ'/ϵ , ΔM_{K} , B decays). [arXiv:2006.01138]



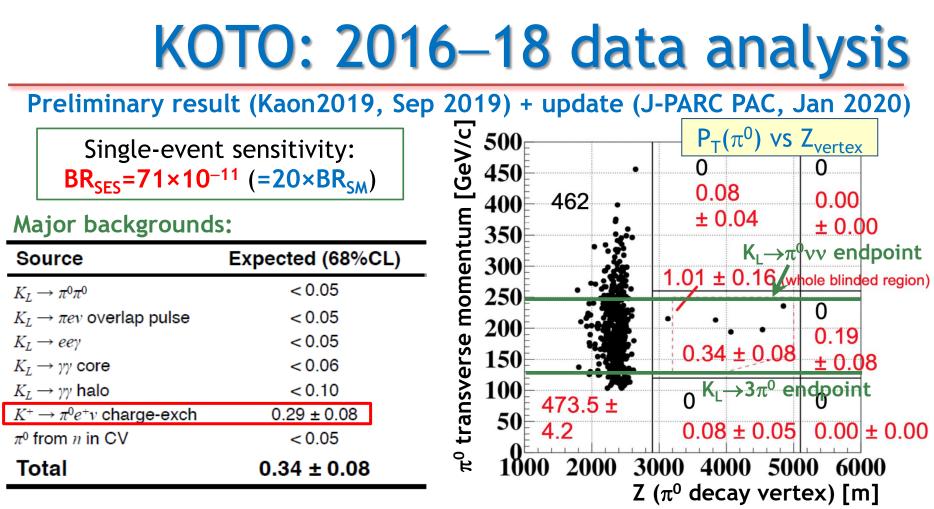
KOTO at J-PARC: $K_L \rightarrow \pi^0 \nu \nu$

- Primary beam: 30 GeV protons; 50 kW = 5.5×10¹³ p/5.2 s as of 2019. Front barrel
- Neutral "pencil" beam (at 16°):
 <p(K_L)> = 2.1 GeV, with 50%
 in the (0.7–2.4) GeV range.
- Beam composition:
 K_L, neutrons, photons.
- Fiducial decay region length: 3 m.
- Csl calorimeter + hermetic photon veto.



E. Goudzovski / Snowmass RPF, 27 July 2020

KOTO status


- 3×10¹⁹ POT collected.
- ✤ Final 2015 result: BR(K₁ $\rightarrow \pi^0 \nu \nu$)<3.0×10⁻⁹ at 90% CL. PRL 122 (2019) 021802

E. Goudzovski / Snowmass RPF, 27 July 2020

- 4×10¹⁹ POT collected.
- Preliminary results reported in 2019. **

2019 run

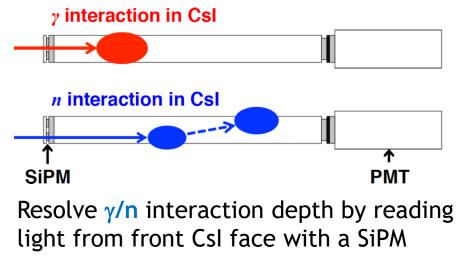
Analysis in progress.

After a blind analysis, four candidate events found in the signal region.

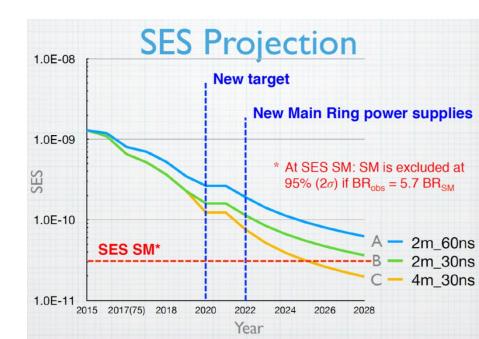
- One event demonstrated to be background (timing in a veto counter).
- $\boldsymbol{\diamondsuit}$ Analysis in progress, the background estimate is being revised.
- ♦ No BR(K_L $\rightarrow \pi^0 \nu \nu$) result reported yet.
- ★ Excess of events above the Grossman-Nir bound: interpretations include hidden-sector physics ($K_L \rightarrow \pi^0 X$). [e.g. PRL124 (2020) 071801,191801]

Short-term plans: KOTO step-1

Signal: need 20 times more (flux × acceptance) to reach SM sensitivity.


- ✓ Increase the beam power ($50 \rightarrow 100 \text{ kW}$) gradually by 2024.
- ✓ 8–16 months of additional running planned in 2020–2024.

Background: need ~10 times improvement in background rejection to obtain $S/B \approx 1$, assuming SM signal rate.


 $\checkmark\,$ Continuing programme of incremental detector upgrades.

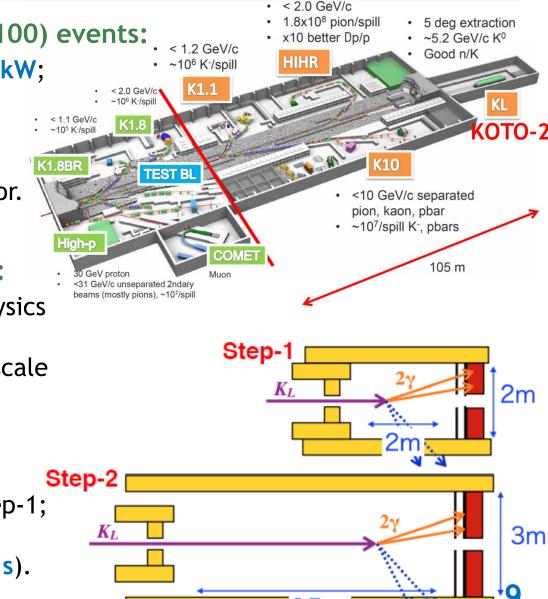
Example:

Dual side readout for CsI calorimeter modules installed at end of 2018 run

E. Goudzovski / Snowmass RPF, 27 July 2020

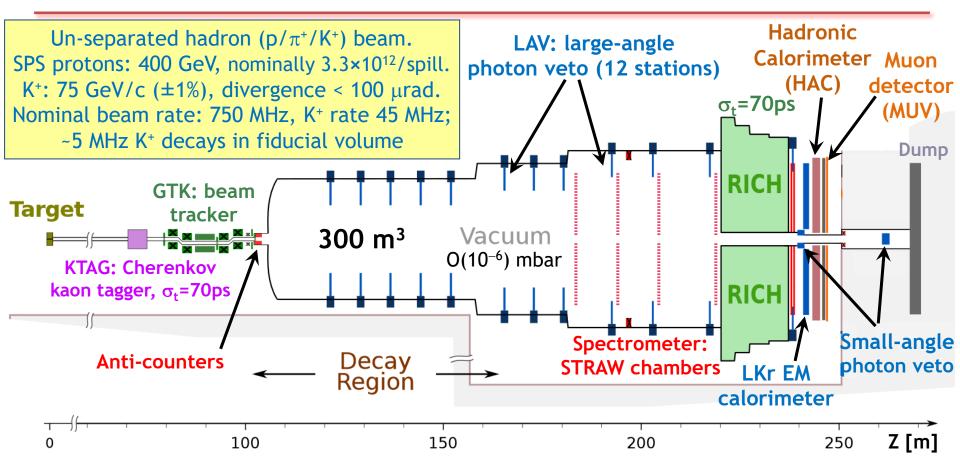
Long-term plans: KOTO step-2

To reach the original goal of O(100) events:

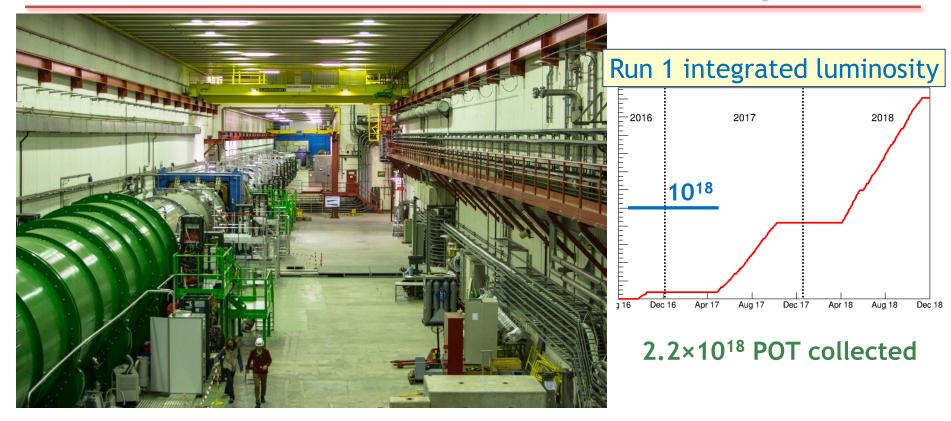

- proton beam power above 100 kW;
- hew neutral beamline at 5°
 with <p(K_L)> = 5.2 GeV/c;
- larger fiducial decay volume;
- complete rebuild of the detector.

Hadron hall extension required:

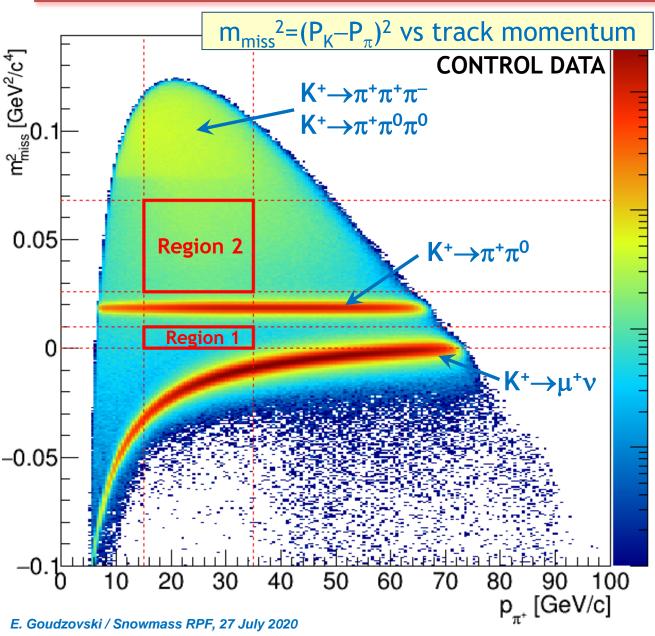
- a joint project with nuclear physics community;
- on the list of KEK future large-scale projects, with medium priority.


Expected sensitivity:

- ✤ signal acceptance: 5× KOTO step-1;
- ✤ 60 SM events with S/B~1 at 100 kW beam power (3×10⁷ s).


5m

NA62 collaboration, JINST 12 (2017) P05025 NA62 at CERN: $K^+ \rightarrow \pi^+ \nu \nu$


- ♦ As of 2018, 1 year of operation $\approx 10^{18}$ protons on target; 4×10^{12} K⁺ decays.
- ★ Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) = 1.4×10⁻⁸.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

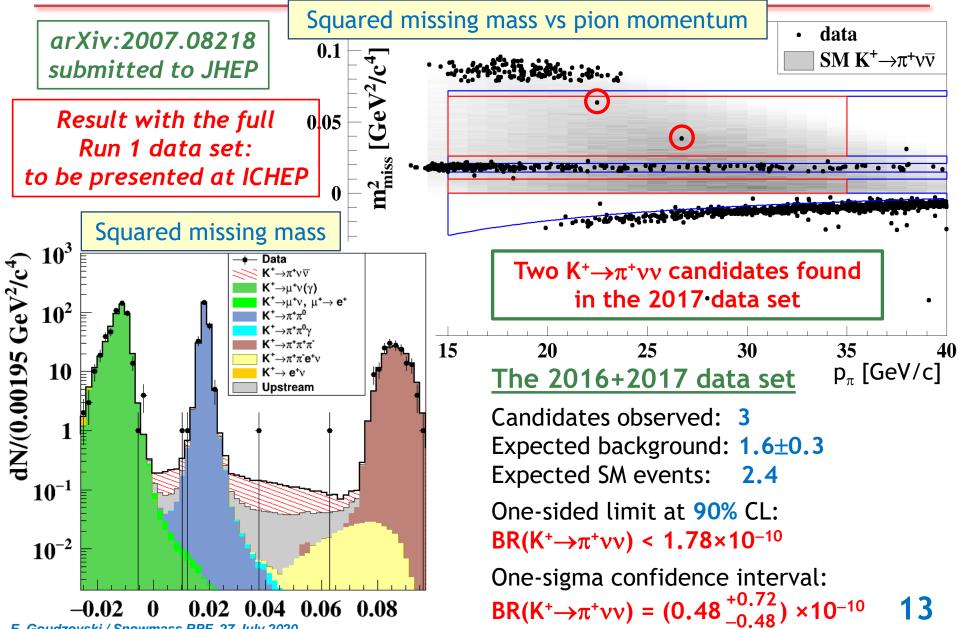
NA62 status: Run 1 completed

- Commissioning run 2015: minimum bias data (~3×10¹⁰ protons/pulse).
- ✤ Physics run 2016 (45 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- Physics run 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✤ Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- Run 2 start after the Long Shutdown 2 in 2021 (~3×10¹² ppp).

NA62: $K_{\pi\nu\nu}$ signal regions

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.


Measured kinematical background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 1×10⁻³; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- ✓ PID (calorimeters & Cherenkov detectors):
 μ suppression 10⁻⁸,
 π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^{0} \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.12

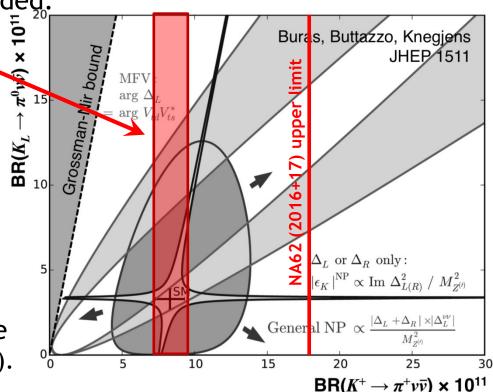
E. Goudzovski / Snowmass RPF, 27 July 2020

Short-term plans: NA62 Run 2

Full NA62 Run 1 (2016–18) data set:

- expected sensitivity: BR_{SES}=O(10⁻¹¹), i.e. O(10) signal events;
- the result to be presented at ICHEP 2020.

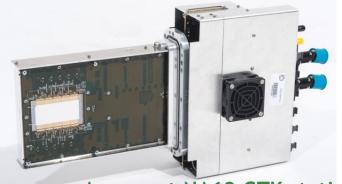
NA62 Run 2 (2021–24): higher intensity, better background suppression.


- Optimized beamline + new veto detectors to reduce the dominant "upstream background";
- ✤ 4th kaon beam tracker station added.

Expected Run 1+2 sensitivity: $\delta BR/BR=O(10\%)$

Broader NA62 programme: (new results at ICHEP 2020)

- ★ Rare decays: K⁺→π⁺μ⁺μ⁻, K⁺→π⁺γγ, K⁺→ππμ⁺ν, π⁰→e⁺e⁻, ...
- ♦ LFV/LNV: $K^+ \rightarrow \pi^- \ell^+ \ell^+$, $K^+ \rightarrow \pi \mu e$, ...
- ✤ Hidden sector particle searches in in K⁺ decays & in beam dump mode (e.g. K⁺→π⁺νν interpreted as K⁺→π⁺X).



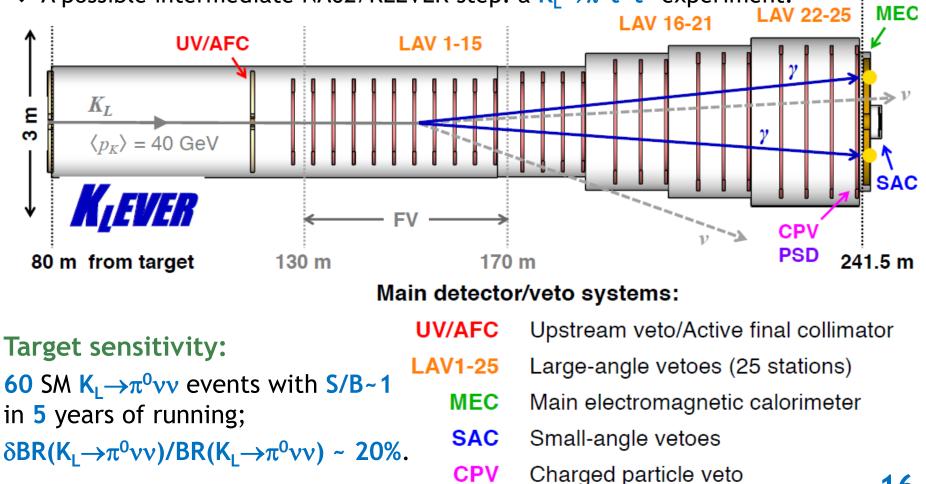
Long-term plans: $K^+ \rightarrow \pi^+ \nu \nu$ at CERN

- ★ The $K^+ \rightarrow \pi^+ \nu \nu$ decay in-flight technique is firmly established, and is expected to reach an O(10%) measurement by 2024.
- ☆ A possible next step after LS3 (in ~2027): an in-flight K⁺→π⁺νν experiment with ×4 beam intensity (present SPS limit), aiming at ~5% precision.
 - ✓ Challenge: O(10ps) time resolution for key detectors to keep random veto under control, while maintaining other performances.

New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm²; efficiency: >99% per plane (incl.fill factor); material budget : 0.3–0.5% X₀; beam Intensity: 3 GHz on 30×60 mm²; peak intensity: 8.0 MHz/mm².

A current NA62 GTK station E. Goudzovski / Snowmass RPF, 27 July 2020


New STRAW spectrometer:

operation in vacuum; straw length/diameter: 2.2 m/5 mm; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); material budget: 1.5%X₀.

Long-term plans: $K_L \rightarrow \pi^0 v v$ at CERN

- ✤ A high-energy experiment (10¹⁹ pot/year) complementary to KOTO.
- Photons from K_L decays boosted forward: veto coverage only up to 100 mrad.
- Roughly the same vacuum tank layout and fiducial volume as NA62.
- ★ A possible intermediate NA62/KLEVER step: a $K_L \rightarrow \pi^0 \ell^+ \ell^-$ experiment.

PSD

Pre-shower detector

Summary

- Measurements of rare kaon decays: uniquely-sensitive indirect probes for new physics up to the O(100 TeV) mass scale.
- ↔ Current experiments are focused on the "golden" $K \rightarrow \pi \nu \nu$ modes.
 - ✓ NA62 to reach O(10%) precision on $BR(K^+ \rightarrow \pi^+ \nu \nu)$ by 2024 with an established decay in flight technique;
 - ✓ KOTO is making significant progress in background reduction, aiming to reach SM sensitivity to $BR(K_L \rightarrow \pi^0 vv)$ by 2024;
 - ✓ LHCb (not covered here): rare K_s , hyperon and η decays.
- Next generation kaon beams are a powerful tool to break the SM.
 - ✓ KOTO step-2 at J-PARC: plans to measure $BR(K_L \rightarrow \pi^0 \nu \nu)$;
 - ✓ CERN: O(5%) precision on BR(K⁺→ $\pi^+\nu\nu$) followed by a K_L experiment;
 - challenges in detector technologies; synergies with future collider and flavour experiments.
 - Other RF2 topics (covered in Emilie's talk): rare η and η' decays; hyperon decays; first-row CKM unitarity tests, LU tests.
 - Overlaps with other topics: RF1 (weak c and b decays), RF6 (dark sector).
 - Looking forward to the Lols (submission by 31st August).