# The Status and Direction of Hadron Spectroscopy Theory

**Richard Lebed** 



Snowmass Exercise
Rare Processes and Precision Frontier

**Topical Group RF7** 

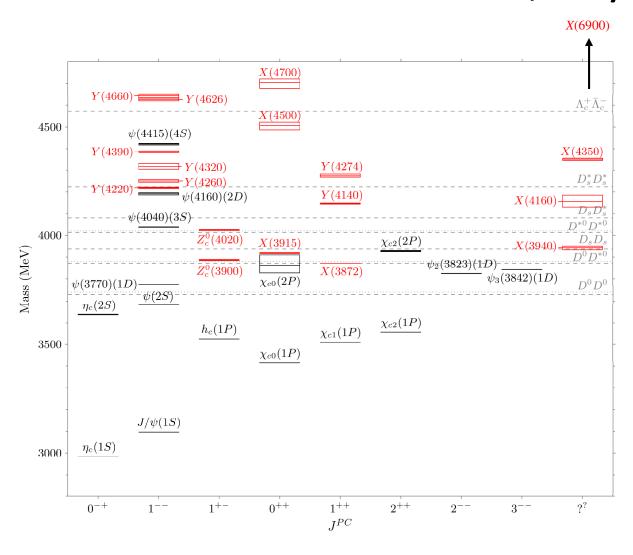
July, 2020

#### Hadron Spectroscopy from 2011-2020

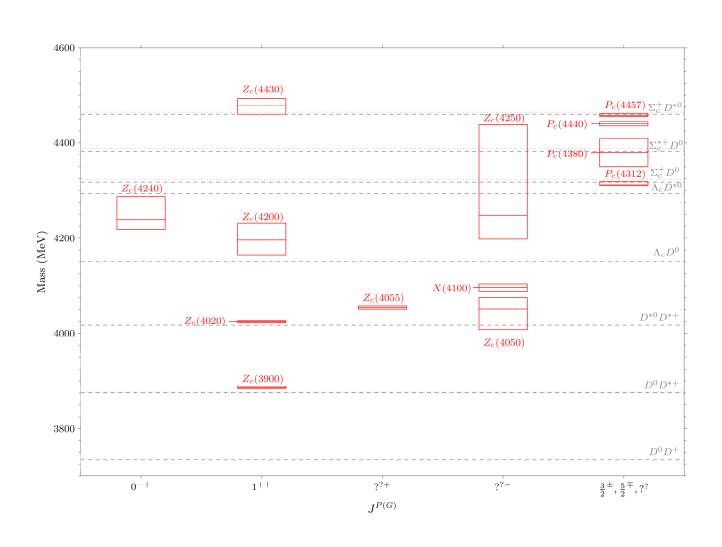
36 conventional heavy-quark hadrons discovered:

```
\chi_{c0}(2P), \psi_2(1D), \psi_3(1D),
\chi_{b1}(3P), \chi_{b2}(3P), \eta_b(2S), h_b(1P), h_b(2P),
D^0(2740), D^0(3000),
\Lambda_c(2860), \Xi_c(2923), \Xi_c(2939), \Xi_c(2965),
\Omega_c(3000), \Omega_c(3050), \Omega_c(3065), \Omega_c(3090), \Omega_c(3120),
B_J(5840), B_J(5970),
\Lambda_b(5912), \Lambda_b(5920), \Lambda_b(6146), \Lambda_b(6152),
\Sigma_b(6097), \Xi_b(5935), \Xi_b(5945), \Xi_b(5955), \Xi_b(6227),
\Omega_b(6316), \Omega_b(6330), \Omega_b(6340), \Omega_b(6350),
B_c(2S), \Xi_{cc}
```

• And all of these plausibly fit as conventional  $q\bar{q}$ , qqq hadrons, most with orbital or radial excitations


#### So the conventional side is almost done?

- Not at all: For example, there is still one last undiscovered conventional  $c\bar{c}$  state,  $\eta_{c2}(1D)$  (2<sup>-+</sup>), that lies below the open-charm threshold, and who knows how many above?
- Many more below open-bottom  $b\bar{b}$  states have not yet been observed (missing  $\eta_b, h_b, D$ -wave states)
- And these are the easy ones! Just fit to a simple potential
- The heavy-lights  $(D, B, \Lambda_c, \Lambda_b)$  require more finesse, especially for higher excitations (Which potential? Large decay widths!)
- Heavy double-strange baryons  $\Omega_c$ ,  $\Omega_b$ : unknown before 2017 e.g., does their multiplicity prove the existence of ss diquarks? [Karliner & Rosner, PRD **102** (2020) 014027]
- Double-heavy  $\Xi_{cc}$ : How far apart are the cc pair? Hints from weak decays (**RF1**)?


#### The future for conventional heavy hadrons

- The discovery era is still not finished (Belle II & LHC)
- Once the states are found, only so much can be learned solely from their mass spectrum
- Key observables like radiative & hadronic transition widths are essential to probing their wave functions
- Many of the states listed above are so new that these studies have not yet been carried out, experimentally or theoretically
- Is the usual theorists' toolbox (quark potential models, chiral-quark models, lattice simulations, heavy-quark effective theory, QCD sum rules) sufficient, or will mysteries remain?
- If those states not understood, then are we ready for exotics?

## Neutral charmoniumlike sector, July 2020

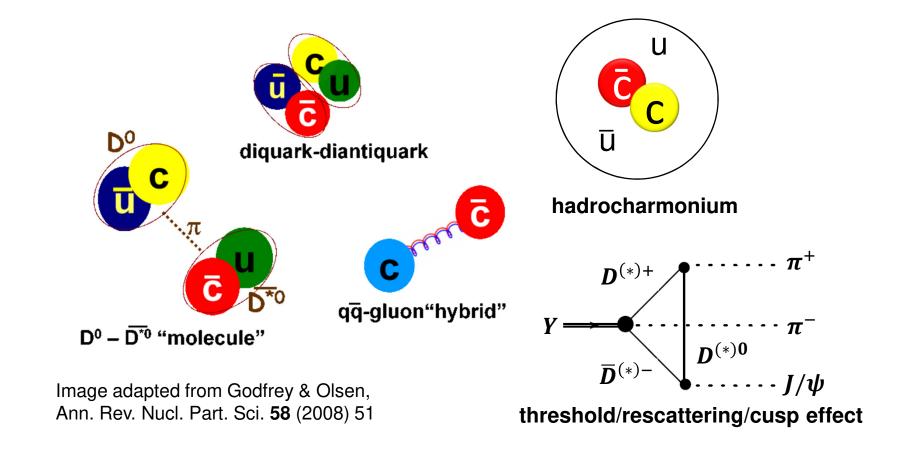


### Charged charmoniumlike sector, July 2020



#### The heavy exotics scorecard, July 2020

- 42 observed exotics
  - 35 in charmoniumlike sector (incl. pentaguarks)
  - 1 decaying to di- $J/\psi$
  - 5 in the (much less explored) bottomonium sector
  - 1 with a single b quark (and an s, a u, and a d)
- 15 confirmed [PDG] (& none of other 27 disproved)
- My naïve count estimates over 100 more exotics are waiting to be discovered


#### The problems with exotics modeling

- 4- and 5-quark states would be hard to model analytically even if all the quarks were heavy, and even if the QCD glue interactions were greatly simplified
  - Developing good methods to study multi-electron atoms took <u>decades</u>, and that's just Coulomb interactions and quantum mechanics
- The most physically significant degrees of freedom in the exotics seem to vary from state to state
  - Are their couplings stronger to open-flavor hadrons or to quarkonium?
- Many have same  $J^{PC}$  as conventional hadrons & mix w/them
- The world data set is constantly improving
  - Models based upon hints from old data may not bear up under the scrutiny of superior data [e.g., Does the Y(4260) actually exist?]

#### But having heavy quarks helps

- All of the common theoretical pictures for exotics rely in one way or another on  $\Lambda_{\rm QCD}/m_{c,b}\ll 1$ :
  - $-m_0$  is nonrelativistic in the state (potential models, lattice simulations)
  - Its Compton wavelength  $\hbar/m_Qc$  is smaller than the full hadronic size, making the heavy quarks "discernable" within the state (hybrids, molecular models, diquark models, hadroquarkonium)
  - The scale  $m_Q$  is heavy enough to belong to the asymptotic freedom region of QCD, allowing for an operator expansion in powers of  $1/m_Q$  (heavy-quark spin effective theory, QCD sum rules)
  - The two-hadron thresholds are spaced further apart than in the forest of overlapping states in the range 1-2 GeV (the reason that light-quark exotics are hard to identify)

#### Primary models for heavy exotic hadrons



Mesons depicted here, but each model has a baryonic analogue

# Spoiler alert

- None of these individual models provide a unified picture for explaining all > 40 exotics, in the way that conventional hadrons are explained in the usual quark model
- Example:  $m_{X(3872)} m_{D^{*0}} m_{D^0} = -0.01 \pm 0.14$  MeV That's got to be a  $\overline{D}{}^0D^{*0}$  molecule! But so loosely bound;  $\pi$  exchange would have to be fine-tuned It's also produced promptly at colliders, and it has a large b.r. to  $\gamma\psi(2S)$ : Must have some tightly bound  $c\bar{c}$  component
- Nor does lattice QCD yet easily handle problems with several energy/length scales: large masses/small binding energies
- For more details on successes & shortcomings of each approach, see my EF06 talk at <a href="https://indico.fnal.gov/event/43796/">https://indico.fnal.gov/event/43796/</a>

#### All is not lost: The way forward

- It is becoming increasingly clear that no single theoretical paradigm explains all > 40 heavy-quark exotics
- Threshold effects seem to be essential in several cases, but even those seem to be insufficient if one allows for only a single component [like  $\overline{D}D^*$  in X(3872)]
- Heavy-quark spin symmetry (most easily probed in decays of exotics to quarkonium) provide important clues on the underlying spin structure of the exotic
- Conventional quarkonium & diquark models provide specific spectra that can be verified or falsified for each observed state
- Transitions between exotic states [like  $Y(4220) \rightarrow Z_c(3900)$ ] will be essential in determining which exotics have similar underlying structures

#### The light-quark exotics

- Why did X(3872) & friends first appear only in the  $c\bar{c}$  sector?
- Hints appear lower down in flavor: e.g.,  $D_{s0}^*(2317)$  seems too light and too narrow to be purely a conventional  $c\bar{s}$  state [Barnes et~al. PRD **68** (2003) 054006]: DK molecule or tetraquark?
- Peculiar states  $\phi(2175)$  (only closed-channel  $s\bar{s}$  decays so far) and X(2240) in  $e^+e^- \to K^+K^-$  [BESIII, PRD **99** (2019) 032001] are natural  $s\bar{s}q\bar{q}$  candidates
- And the lattice predicts the lowest glueball ~1.5 GeV [Review: Ochs, J. Phys. G 40 (2013) 043001], while  $\pi_1(1600)$  appears to be a hybrid [JPAC, PRL 122 (2019) 042002], such states as GlueX and COMPASS are designed to study

#### The light-quark exotics

- **Q**: But aren't light-quark exotics nowadays essentially nuclear physics, rather than high-energy particle physics?
- A: Particle physics is defined as whatever particle physicists choose to do with their experiments
- A: You don't really understand what heavy-quark exotics are, unless you understand how they emerge as clearly identifiable states when their quarks become heavy

# Preliminary Proposal: Directions for Theory for the 2020's

- The kinds of analysis required by the flood of experimental data that will emerge in the next few years will require broader theoretical efforts:
  - Collaborative endeavors by theorists with differing areas of expertise,
     e.g., lattice simulations and potential models
     e.g., effective field theory and scattering theory
     e.g., medium-energy nuclear theorists and high-energy flavor theorists
  - Collaborative endeavors by theorists working closely
     with particular experiments
     e.g., JPAC [Joint Physics Analysis Center] with connections to GlueX