FORWARD JET PRODUCTION WITHIN SMALL-X ITMD FACTORIZATION

PIOTR KOTKO

AGH University, KRAKOW

BASED ON WORK IN COLLABORATION WITH:T. ALTINOLUK, R. BOUSSARIE, E. BLANCO, M. BURY,A. VAN HAMEREN, K. KUTAK, C. MARQUET, E. PETRESKA,B. S. SAPETA, A. STASTO, M. STRIKMAN

SUPPORTED BY: NCN GRANT DEC-2017/27/B/ST2/01985 NCN GRANT DEC-2018/31/D/ST2/02731

Snowmass 2020 EF06 meeting

PLAN

1. Introduction

- A. Motivation
- B. Dilute-dense collisions in Color Glass Condensate (CGC)

2. Framework

- A. Limiting cases of CGC formulae for dilute-dense collisions
- B. Small-x Improved TMD factorization (ITMD) for pA and γA
- C. TMD gluon distributions at small x
- D. KaTie Monte Carlo generator
- 3. Phenomenology for LHC and EIC
 - A. Forward dijets and trijets in pA collisions
 - B. Forward dijets in γA collisions
- 4. Summary & Outlook

MOTIVATION

Study of high energy limit of QCD:

saturation of gluon density

Nonlinear evolution of TMD PDFs.

Interplay of saturation and Sudakov resummation.

Nonuniversality of TMD gluon PDFs.

• k_T -factorization

TMD factorization beyond leading power.

INTRODUCTION

pA (dilute-dense) collisions within CGC

INTRODUCTION Summary of CGC jet/hadron production results

		only full CGC		
Single inclusive hadron production in pA (NLO)		calculations included		
[G.A. Chirilli, BW. Xiao, F. Yuan, 2012] [A. Stasto, BW. Xiao, D. Zaslavsky, 2014]	[T. Altinoluk, N. Armesto, G. Beuf, A. Kovner, M. Lublin [E. Iancu, A.H. Mueller, D.N. Triantafyllopoulos, 2016]	sky, 2015] PHENO		
Dijet+photon production in γ^*A (NLO)	[K. Roy, R. Venugopalan, 2018, 2019]			
Dijet production in diffractive γ^*A (NLO)				
Dijet/di-hadron production in γ^*A	[R. Boussarie, A. Grabovsky, L. Szymanowski, S. Wallon, 2019]			
	[F. Salazar, B. Schenke, 2020]			
	[H. Mantysaari, N. Mueller, F. Salazar, B. Schenke, 2019]	PHENO		
Dijet/di-hadron production in pA	[C. Marquet, 2007] [H. Fujii, F. Gelis, R. Venugopalan, 2 [E. Iancu, J. Leidet, 2013] [H. Fujii, C. Marquet, K. Wata	2005] nabe, 2020] PHENO		
Heavy quark pair production in pA				
	[C. Marquet, C. Roiesnel, P. Taels, 2018]			
Trijet production in γ^*A	[A. Ayala, M. Hentchinski, J. Jalilian-Marian, M.E. Tejeda-Yeomans, 2016] [T. Altinoluk, R. Boussarie, C. Marquet, P. Taels, 2020]			
Dijet+photon production in pA	[T. Altinoluk, R. Boussarie, C. Marquet, P. Taels, 2019]			
	[I. Altinoluk, N. Armesto, A. Kovner, M. Lublinsky, E. Pet	reska, 2018]		
Trijet production in pA	[E. lancu, Y. Mulian, 2018]			

INTRODUCTION

 $P_T \sim k_T \gg \overline{Q_s}$

DILUTE

KT - FACTORIZATION

BFKL dynamics

[S. Catani, M. Ciafaloni, F. Hautmann, 1991]

[E. lancu, J. Leidet, 2013]

[M. Deak, F. Hautmann, H. Jung, K. Kutak, 2009]

Limiting cases of CGC in dilute-dense collisions

CGC dilute - dense

three scales:

 $Q_s \gg \Lambda_{\text{QCD}}$ — saturation scale k_T — jet transverse momentum imbalance P_T — jet average transverse momentum

TMD GENERALIZED FACTORIZATION

leading twist

[F. Dominguez, C. Marquet, B. Xiao, F. Yuan, 2011]
[C. Marquet, E. Petreska, C. Roiesnel, 2016]
[C. Marquet, C. Roiesnel, P. Taels, 2018]
[T. Altinoluk, R. Boussarie, C. Marquet, P. Taels, 2019]
[T. Altinoluk, R. Boussarie, C. Marquet, P. Taels, 2020]

"IMPROVED" THD factorization

all kinematic twists

[PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, 2015][A. van Hameren, PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, 2016][T. Altinoluk, R. Boussarie, PK, 2019]

 $\overline{P_T} \gg \overline{Q_s}$

 $P_T \gg k_T \sim Q_s$

INTRODUCTION TMD gluon distributions

Generic operator definition (unpolarized)

 $\mathscr{U}^{[+]}$

Gauge links $\mathscr{U}_{C_1}, \mathscr{U}_{C_2}$ depend on the color structure of the hard process. They are build from two basic Wilson lines:

[C. Bomhof, P. Mulders, F. Pijlman, 2004]

$$\mathcal{U}^{[\pm]} = [0, (\pm \infty, \overrightarrow{0}_T, 0)] \times [(\pm \infty, \overrightarrow{0}_T, 0), (\pm \infty, \overrightarrow{\xi}_T, 0)] \times [(\pm \infty, \overrightarrow{\xi}_T, 0), (\xi^+, \overrightarrow{\xi}_T, 0)]$$

87

F(o)

FUTURE - POINTING

$$[x, y] = \mathscr{P} \exp \left\{ ig \int_{\overline{xy}} dz_{\mu} A^{\mu}_{a}(z) t^{a} \right\}$$

$$\bigwedge$$
STRAIGHT LINE
SEGMENT

 $\begin{cases} \text{Light-cone basis:} \\ v^{\pm} = v^{\mu} n_{\mu}^{\pm}, \quad n^{\pm} = (1,0,0, \pm 1) \\ v^{\mu} = \frac{1}{2} v^{+} n^{-} + \frac{1}{2} v^{-} n^{+} + v_{T}^{\mu} \end{cases}$

INTRODUCTION TMD gluon distributions: proliferation

All possible operators $\mathscr{F}_{qg}^{(1)} \sim \langle P \,|\, \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \, \mathscr{U}^{[-]\dagger} \hat{F}^{i-} \left(0 \right) \, \mathscr{U}^{[+]} \Big] \,|\, P \rangle$ $\mathcal{F}_{qg}^{(2)} \sim \langle P | \frac{\mathrm{Tr}\mathcal{U}^{[\Box]}}{N} \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathcal{U}^{[+]\dagger} \hat{F}^{i-} \left(0 \right) \mathcal{U}^{[+]} \Big] | P \rangle$ $\mathscr{F}_{qg}^{(3)} \sim \langle P \,|\, \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathscr{U}^{[+]\dagger} \hat{F}^{i-} \left(0 \right) \mathscr{U}^{[\Box]} \mathscr{U}^{[+]} \Big] \,|\, P \rangle$ $\mathscr{F}_{gg}^{(1)} \sim \langle P | \frac{\mathrm{Tr}\mathscr{U}^{[\square]^{\dagger}}}{N} \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathscr{U}^{[-]^{\dagger}} \hat{F}^{i-} \left(0 \right) \mathscr{U}^{[+]} \Big] | P \rangle$ $\mathcal{F}_{gg}^{(2)} \sim \langle P \,|\, \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} \Big] \mathrm{Tr} \Big[\hat{F}^{i-} \left(0 \right) \mathcal{U}^{[\Box]} \Big] \,|\, P \rangle$ $\mathcal{F}_{gg}^{(3)} \sim \langle P \,|\, \mathrm{Tr} \left[\hat{F}^{i-} \left(\xi \right) \mathcal{U}^{[+]\dagger} \hat{F}^{i-} \left(0 \right) \mathcal{U}^{[+]} \right] |P\rangle$ $\mathscr{F}_{gg}^{(4)} \sim \langle P \,|\, \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathscr{U}^{[-]\dagger} \hat{F}^{i-} \left(0 \right) \mathscr{U}^{[-]} \Big] \,|\, P \rangle$ $\mathscr{F}_{gg}^{(5)} \sim \langle P \,|\, \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathscr{U}^{[\Box]\dagger} \mathscr{U}^{[+]\dagger} \hat{F}^{i-} \left(0 \right) \mathscr{U}^{[\Box]} \mathscr{U}^{[+]} \Big] \,|P\rangle$ $\mathscr{F}_{gg}^{(6)} \sim \langle P | \frac{\mathrm{Tr}\mathscr{U}^{[\bigsqcup]}}{N_{c}} \frac{\mathrm{Tr}\mathscr{U}^{[\bigsqcup]^{\dagger}}}{N_{c}} \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathscr{U}^{[+]^{\dagger}} \hat{F}^{i-} \left(0 \right) \mathscr{U}^{[+]} \Big] | P \rangle$ $\mathcal{F}_{gg}^{(7)} \sim \langle P | \frac{\mathrm{Tr}\mathcal{U}^{[\Box]}}{N} \mathrm{Tr} \Big[\hat{F}^{i-} \left(\xi \right) \mathcal{U}^{[\Box]\dagger} \mathcal{U}^{[+]\dagger} \hat{F}^{i-} \left(0 \right) \mathcal{U}^{[+]} \Big] | P \rangle$ WILSON $\mathcal{M}^{[\Box]} = \mathcal{U}^{[+]} \mathcal{U}^{[-]^{\dagger}}$ [M. Bury, PK , K. Kutak, 2018]

Example What is the TMD gluon distribution for the following process: 202000000 MAND Two independent color flows: $\times \left(-\frac{1}{N_c}\right)$ > TMD TIT MOTIO $\sim \frac{N_c}{2C_F} \mathcal{F}_{qg}^{(2)} - \frac{1}{2N_c C_F} \mathcal{F}_{qg}^{(1)}$

Gluon TMD for any multiparticle process is given by a linear combination of these "basis" TMDs.

INTRODUCTION TMD gluon distributions: small-x limit

Small-x limit of TMD gluon distributions

$$\int \frac{d\xi^{+}d^{2}\xi_{T}}{(2\pi)^{3}P^{-}} e^{ixP^{-}\xi^{+}-i\vec{k}_{T}\cdot\vec{\xi}_{T}} \langle P | \operatorname{Tr} \left[\hat{F}^{i-} \left(\xi^{+}, \vec{\xi}_{T}, \xi^{-} = 0 \right) \mathcal{U}_{C_{1}} \hat{F}^{i-} (0) \mathcal{U}_{C_{2}} \right] | P \rangle$$

$$\lim_{X \to O_{1}} \operatorname{LIMIT}_{X \to O_{2}}$$

Dependence on x is only via the small-x evolution equations:

- BFKL (Balitsky-Fadin-Kuraev-Lipatov). BK (Balitsky-Kovchegov) and modifications
- JIMWLK (Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner)

Intensively studied:

[D. Kharzeev, Y. Kovchegov, K. Tuchin, 2003]
[B. Xiao, F. Yuan, 2010]
[F. Dominguez, C. Marquet, B. Xiao, F. Yuan, 2011]
[A. Metz, J. Zhou, 2011]
[E. Akcakaya, A. Schafer, J. Zhou, 2012]
[C. Marquet, E. Petreska, C. Roiesnel, 2016]
[I. Balitsky, A. Tarasov, 2015, 2016]
[D. Boer, P. Mulders, J. Zhou, Y. Zhou, 2017]
[C. Marquet, C. Roiesnel, P. Taels, 2018]
[Y. Kovchegov, D. Pitonyak, M. Sievert, 2017,2018]
[T. Altinoluk, R. Boussarie, 2019]

[R. Boussarie, Y. Mehtar-Tani, 2020]

FRAMEWORK Small-x Improved TMD Factorization (ITMD)

PHENOMENOLOGY Obtaining small-x TMD gluon distributions

Using CGC theory one can derive a relation between the small-x TMDs using:

(i) large N_c limit

(ii) mean field (Gaussian) approximation.

All TMDs needed for dijet production can be calculated from the dipole gluon distribution $\mathcal{F}_{qg}^{(1)}$.

We used $\mathscr{F}_{qg}^{(1)}$ obeying the BK equation (with subleading corrections based on the Kwiecinski-Martin-Stasto equation) and fitted to HERA data.

> [K. Kutak, J. Kwieciński, 2003] [K. Kutak, S. Sapeta, 2012]

It is possible to relax the assumptions (i) and (ii) using the JIMWLK equation.

Prove of concept:

[C. Marquet, E. Petreska, C. Roiesnel, 2016]

[A. Van Hameren, PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, 2016]

PHENOMENOLOGY

ITMD vs ATLAS data

We study an interplay of saturation and Sudakov resummation vs the shape of C_{12} .

Good description of the broadening effects

A. Van Hameren, P. Kotko, K. Kutak, S. Sapeta, Phys. Lett. B795 (2019) 511

FRAMEWORK ITMD for jets in DIS

Weizsacke

ITMD factorization formula for DIS is almost the same as the k_T -factorization formula in inclusive DIS, but probes different TMD gluon distribution

[PK, K. Kutak, S. Sapeta, A. Stasto, M. Strikman, 2017]

$$d\sigma_{\gamma^*A \to 2j+X} \sim \int \frac{dx}{x} \int d^2k_T \mathscr{F}^{(3)}_{gg}(x, k_T, \mu) \ d\sigma_{\gamma^*g^* \to j_1 j_2}(x, k_T, \mu)$$

$$ME1ZSÄCKER-WILLIAMS$$

$$TMD \ GLNON \ DISTRIBUTION$$

$$OFF-SHELL$$

$$Photon - GLUON \ FUSION$$

$$Weizsacker-Williams TMD gluon \ distribution \ is the true gluon number \ distribution.$$

$$Multi \ jet/hadron \ production \ at \ EIC \ will \ be \ a \ unique \ probe.$$

$$It \ is \ not \ probed \ in \ inclusive \ processes \ nor \ in \ jet \ production \ in \ pA \ (at \ large \ N_c \).$$

[L. Zheng, E.C. Aschenauer, J.H. Lee, B-W. Xiao, 2014] [L. Zheng, E.C. Aschenauer, J.H. Lee, B-W. Xiao, Z-B. Yin, 2018]

PHENOMENOLOGY Weizsacker-Williams TMD gluon distribution

Using the same approximations as for other gluon TMDs we can calculate the Weizsacker-Williams TMD from the dipole distribution.

PHENOMENOLOGY DIS pilot studies

ITMD for dijets in γ A collisions has been so far studied in ultraperipheral heavy ion collisions at LHC for dijet azimuthal imbalance. [PK, K. Kutak, S. Sapeta, A. Stasto, M. Strikman, 2017]

FRAMEWORK ITMD* for three and more jets in pA collisions

If we ignore linearly polarized gluon contribution for multi-jet processes, the ITMD framework (called ITMD*) can be formulated (and automatized).

[M. Bury, PK , K. Kutak, 2018] [M. Bury, A. van Hameren, PK, K. Kutak, 2020]

PHENOMENOLOGY Three forward jets at LHC within ITMD*

Using the large N_c limit to the TMD matrix, and in the mean field approximation, the same TMD operators contribute as for dijets.

PHENOMENOLOGY Three forward jets at LHC within ITMD*

Using the large N_c limit to the TMD matrix, and in the mean field approximation, the same TMD operators contribute as for dijets.

PHENOMENOLOGY Three forward jets at LHC within ITMD*

Using the large N_c limit to the TMD matrix, and in the mean field approximation, the same TMD operators contribute as for dijets.

[M. Bury, A. van Hameren, PK, K. Kutak, 2020]

Azimuthal angle between the plane spanned by the leading jets and the soft jet

]2

3

PHENOMENOLOGY KaTie Monte Carlo

KATIE

https://bitbucket.org/hameren/katie

- parton level event generator, like ALPGEN, HELAC, MADGRAPH, etc.
- arbitrary processes within the standard model (including effective Higgs-gluon coupling) with several final-state particles.
- 0, 1, or 2 off-shell intial states.
- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids, or with TMDlib.
- a calculation is steered by a single input file.
- employs an optimization stage in which the pre-samplers for all channels are optimized.
- during the generation stage several event files can be created in parallel.
- event files can be processed further by parton-shower program like CASCADE.
- (evaluation of) matrix elements now separately available, including C++ interface.

A. van Hameren, EIC yellow report seminar

SUMMARY

PA	RTICLE	PROD	ouction
in	dilute-a	dense	collisions

CGC	ITMD
 cross section structure: projectile wave function color averages of straight infinite Wilson lines all kinematic twists multiple interactions (genuine twist) hard to compute and automatize domain: jets of any hardness 	 cross section structure: off-shell gauge invariant amplitudes many TMD gluon distributions all kinematic twists no genuine twists has been automatized and implemented into MC codes domain: quite hard jets, but not neglecting saturation scale

FUTURE PLANS

- Data-driven small-x TMD gluon distributions from JIMWLK equation (collaboration with lattice QCD experts K. Cichy and P. Korcyl)
- Improvement of the Sudakov resummation (basing on calculations by A. Mueller, B. Xiao, F. Yuan)
- Inclusion of linearly polarized gluons in higher multiplicity jet calculations (extending ITMD* to full ITMD)
- Automated NLO calculations for off-shell gauge invariant amplitudes (result for any number of gluons with same helicity at NLO is ready)

BACKUP

FRAMEWORK Off-shell hard factors

FRAMEWORK Off-shell hard factors

Off-shell MHV tree amplitudes

$$\mathcal{M}\left(1^{*}, 2^{-}, 3^{+}, \dots, n^{+}\right) \sim g^{n-2} \frac{\langle 1^{*} 2 \rangle^{4}}{\langle 1^{*} 2 \rangle \langle 23 \rangle \langle 34 \rangle \dots \langle n1^{*} \rangle}$$

SPINOR PRODUCTS

 gauge invariance is essential

[A. Van Hameren, PK, K. Kutak, 2012] [A. Van Hameren, 2014]

Beyond tree level

There exist low multiplicity analytic results within the Lipatov's effective action approach.

[M. Nefedov, V. Saleev, 2017] [M. Nefedov, 2019]

On going project towards automated one-loop corrections in "embedding" approach.

[A. Van Hameren, 2017]

[E. Blanco, A. Van Hameren, PK, K. Kutak, in preparation...]

CGC & TMD

Proof of the ITMD formula

GENERIC I +2 CGC AMPLITUDE

CGC & TMD Proof of the ITMD formula

$$\begin{aligned} \mathsf{STEP \#1} \quad \mathsf{TAYLOR} \quad \mathsf{EXPANSION} \quad \mathsf{IN} \quad \vec{\mathsf{FT}} \\ \mathscr{A}^{(n)} &= \delta(p_1^+ + p_2^+ - p_0^+) \int d^2 b_T d^2 r_T \, e^{-i(\vec{P}_T \cdot \vec{r}_T + \vec{k}_T \cdot \vec{b}_T)} \frac{r_T^{\mu} \Gamma_{\mu}}{r_T^2} \\ &\quad \frac{1}{n!} r_T^{\alpha_1} \dots r_T^{\alpha_n} \sum_{i=0}^n \binom{n}{i} \overline{z^i} (-z)^{n-i} \left(\partial_{\alpha_1} \dots \partial_{\alpha_i} U^{R_1}(\vec{b})\right) T^{R_0} \left(\partial_{\alpha_{i+1}} \dots \partial_{\alpha_n} U^{R_2}(\vec{b})\right) \end{aligned}$$

$$\begin{aligned} \mathsf{STEP \#2} & \mathsf{ISOLATION OF I-BOPY CONTRIBUTIONS} \\ \mathscr{A}_{1-\mathrm{body}}^{(n)} &= \delta(p_1^+ + p_2^+ - p_0^+) \int d^2 b_T d^2 r_T e^{-i(\overrightarrow{P}_T \cdot \overrightarrow{r}_T + \overrightarrow{k}_T \cdot \overrightarrow{b}_T)} \frac{r_T^{\mu} \Gamma_{\mu}}{r_T^2} \\ & \overrightarrow{r}_T^{\alpha} \sum_{j=0}^n \frac{(i \overrightarrow{k}_T \cdot \overrightarrow{r}_T)^j}{(j+1)!} \bigg\{ \partial_{\alpha} U^{R_1}(\overrightarrow{b}) T^{R_0} U^{R_2}(\overrightarrow{b}) \overrightarrow{z}^{(j+1)} + U^{R_1}(\overrightarrow{b}) T^{R_0} \partial_{\alpha} U^{R_2}(\overrightarrow{b}) (-z)^{(j+1)} \bigg\} \end{aligned}$$

STEP #3 RESUMMATION & INTEGRATION

$$\mathcal{A}_{1-\text{body}} = \delta(p_1^+ + p_2^+ - p_0^+) \int d^2 b_T e^{-i\vec{k}_T \cdot \vec{b}_T} \frac{\Gamma_i}{k_T^2} (k_T^i \delta^{jl} + k_T^j \delta^{il} - k_T^l \delta^{ij})$$

$$\left\{ \left(\frac{P_T^l}{P_T^2} + \frac{p_{2T}^l}{p_{2T}^2} \right) \partial_j U^{R_1}(\vec{b}) T^{R_0} U^{R_2}(\vec{b}) + \left(\frac{P_T^l}{P_T^2} - \frac{p_{1T}^l}{p_{1T}^2} \right) U^{R_1}(\vec{b}) T^{R_0} \partial_j U^{R_2}(\vec{b}) \right\}$$

STEP #4 SQUARE THE AMPLITUDE COLOR ALGEBRA >> ITMD