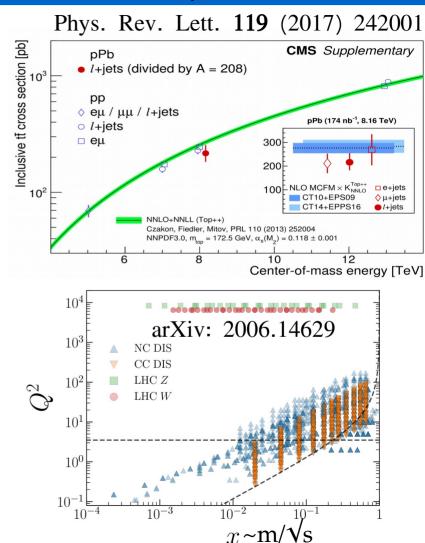
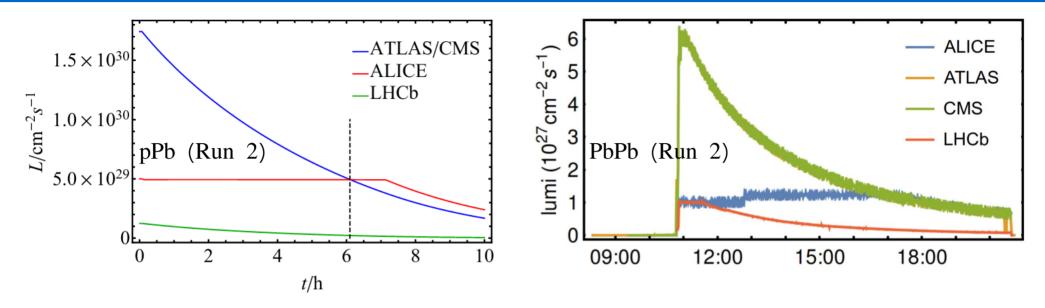

Future physics opportunities with W and Z bosons and top quarks for high-density QCD at HL-LHC <u>arXiv: 1812.06772</u>

CMS Experiment at the LHC, CERN


Run / Event / LS: 326580 / 14140126 / 52

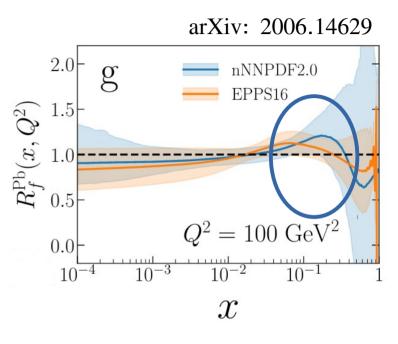
Data recorded: 2018-Nov-11 23:57:04.330752 GMT



Current studies @ LHC: $4 \sqrt{s} \& 3$ systems!

- \blacksquare A wealth of W and Z boson and tt measurements
 - At 5, 7, 8, and 13 TeV
 - In central and forward regions
 - In pp, pPb, and PbPb collisions
- A new era for nuclear-modification studies
 - Initial state
 - nPDFs at complemenatary (x, Q^2) values
 - Final state
 - tools for parton energy loss

HL-LHC operational scenarios for pPb and PbPb 3

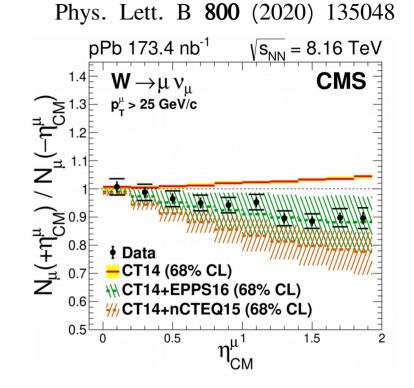

☑ Included in the YR and recently refined (CERN-ACC-2020-0011, CERN internal)

- scenarios are based on **benchmarked** models (actually agree remarkaly well with Run 2 LHC data)
- ≈five one-month runs would be needed to reach 13 /nb of PbPb
- ≈two one-month runs would be needed to reach 1.2 /pb of pPb
- projections could be improved, e.g., due to operational efficiency (>50%), etc

Key characteristics of the nPDF global fits

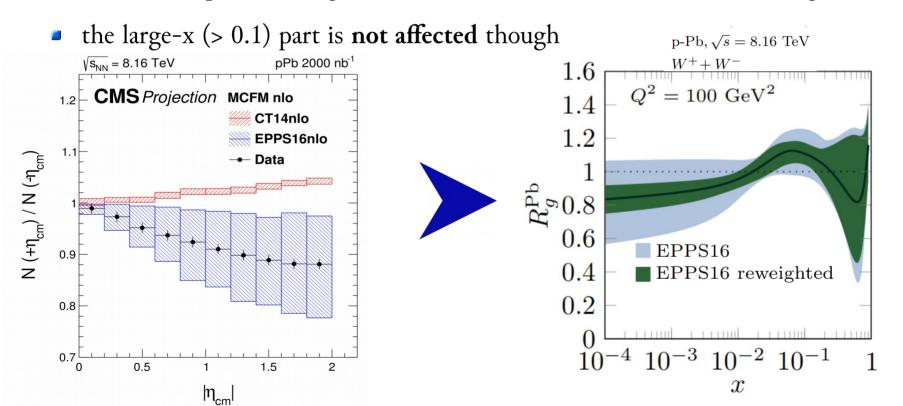
With input from Annu. Rev. Nucl. Part. Sci. 70 (2020)

Nuclear (most recent) PDFs	nCTEQ15	EPPS16	nNNPDF 2 .0 (1 .0)	TUJU19
Perturbative order	NLO	NLO	NLO, NNLO	NLO, NNLO
Heavy quark scheme	ACOT	S-ACOT	FONLL	ZM-VFN
Value of $\alpha_s(m_Z)$	0.118	0.118	0.118	0.118
Input scale Q_0	$1.30~{\rm GeV}$	$1.30 { m ~GeV}$	$1.00 { m ~GeV}$	$1.69~{ m GeV}$
Data points	708	1811	1467(451)	2336
Fixed Target DIS	\checkmark	\checkmark	$\sqrt{(w/o \nu - DIS)}$	\checkmark
Fixed Target DY	\checkmark	\checkmark		
LHC DY and W		\checkmark	$\checkmark(\mathbf{X})$	
Jet and had. prod.	$(\pi^0 \text{ only})$	$(\pi^0, LHC dijet)$		
Independent PDFs	6	6	3	6
Parametrisation	simple pol.	simple pol.	neural network	simple pol.
Free parameters	16	20	256(178)	16
Statistical treatment	Hessian	$\mathbf{Hessian}$	Monte Carlo	Hessian
Tolerance	$\Delta\chi^2 = 35$	$\Delta \chi^2 = 52$		$\Delta \chi^2 = 50$

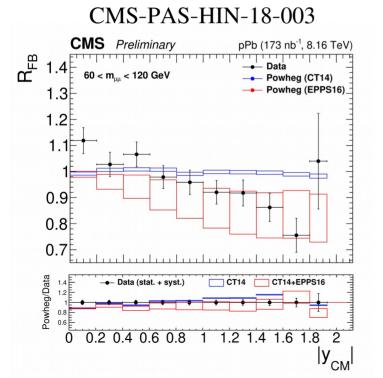

nPDFs from several groups

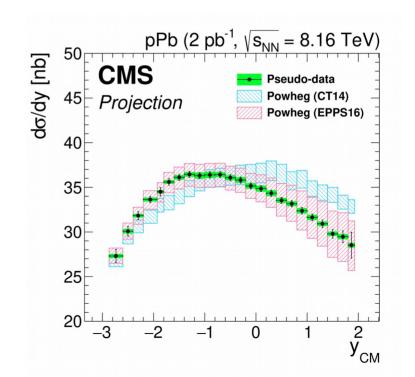
- less available data sets compared to the free-nucleon cases
- different data sets (e.g., pPb LHC data), theoretical assumptions, and methodological settings
- not well understood aspects, e.g., the nuclear modifications of the gluon distribution

4

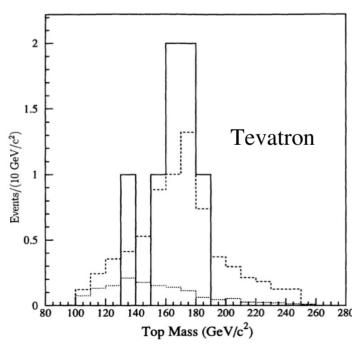

Observation of nuclear modifications in W production5

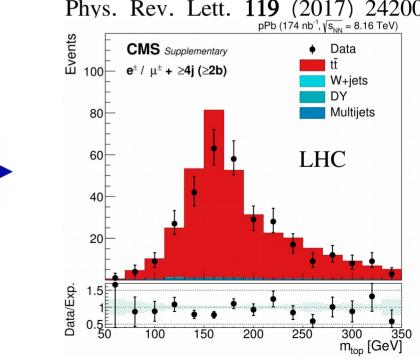
- **W** boson asymmetry measurement with Run **2** data
 - in pPb collisions at 8.16 TeV
 - results favour nPDF calculations
 - can provide **constraints** on the nPDF global fits
 - gluons but also light sea quarks


Prospects for W boson forward-to-backward ratios 6

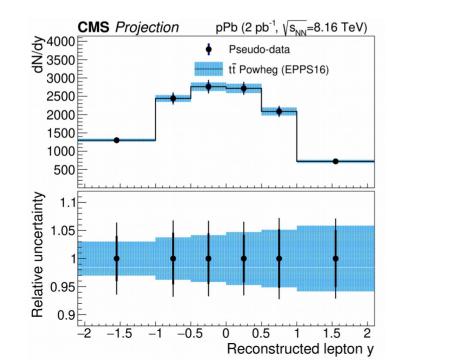

- ☑ Exploit the larger (× 10) pPb data set in Runs 3–4
 - experimental uncertainties much **smaller** than the nPDF ones
 - to showcase the potential: significant reduction of the uncertainties in the gluon nPDF

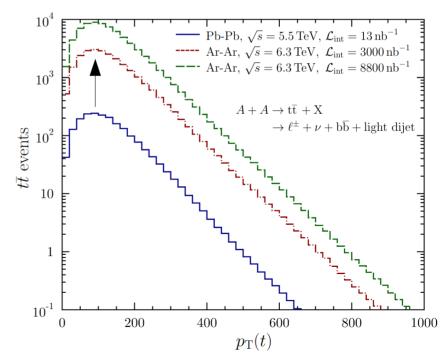
Differential cross sections for the Drell–Yan process

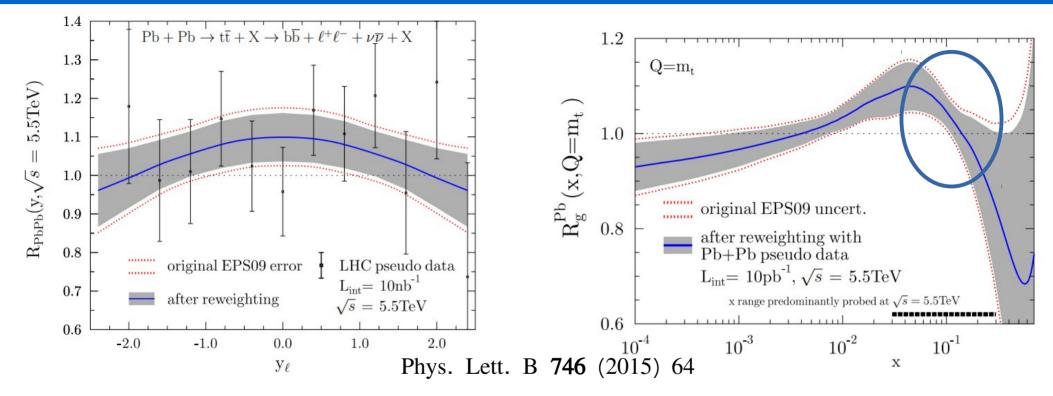

- \Box d σ /dX and proton- over Pb-going ratios with Run 2 data at 8.16 TeV
 - including, but not restricted to, Z boson production
 - results already favor nPDF calculations too



Observation of top quarks in pPb collisions


- Performed in the semileptonic final state with Run 2 data at 8.16 TeV
 - events with ≥ 2 b jets: **background-free**
 - results not yet sensitive to nPDF vs PDF difference (e.g., a mild increase relative to pp)
 Phys. Rev. Lett. **73** (1994) 225
 Phys. Rev. Lett. **119** (2017) 242001




Prospects for top quark production at pA HL-LHC

- **The y of the decay leptons sensitive probe of the nuclear gluon density**
 - **comparable** experimental and nPDF uncertainty with the pPb data set in Runs 3–4
 - depending on the expected systematic error and bin-by-bin correlations
 - to showcase **another potential**: In a pAr mode, the higher \sqrt{s} + lumonsity \rightarrow increased tr yield

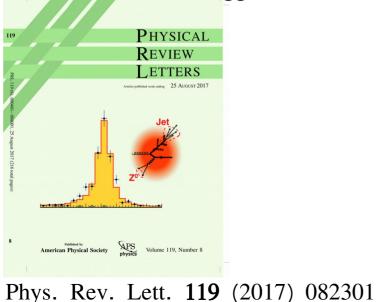
Prospects for top quark production at AA HL-LHC 10

nPDF uncertainties increase at large x due to the lack of direct constraints

- the region where the predictions for R_g also differ between nPDF determinations
- some constraints from the current LHC dijet measurements (cf. backup)

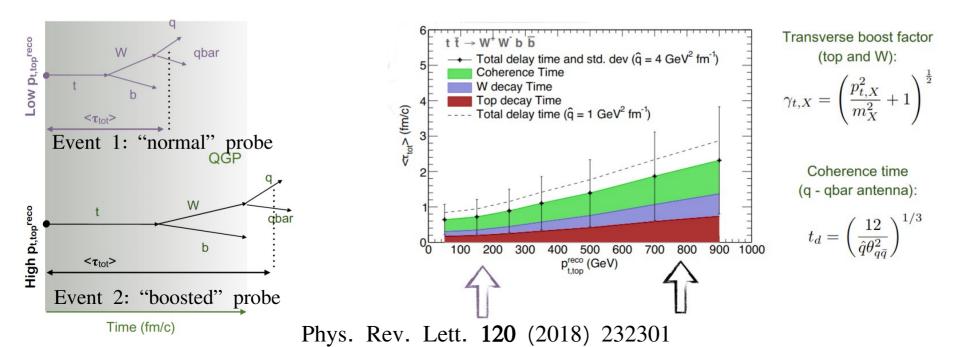
"Unveiling the yoctosec structure of the QGP"

dpal

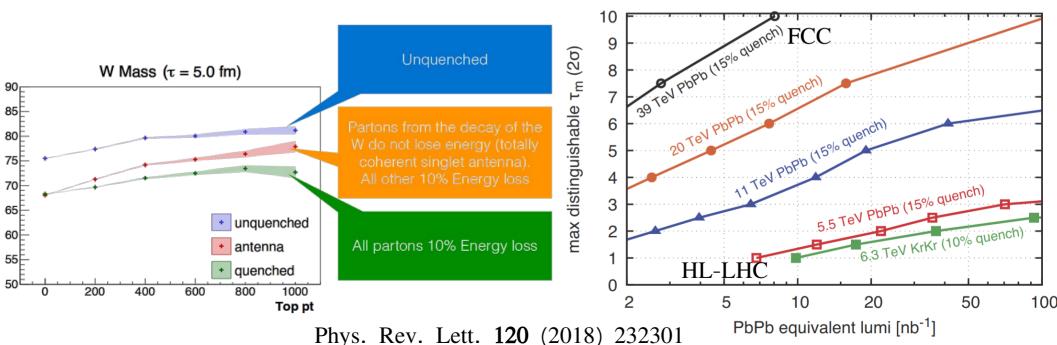

QGP

"Tag

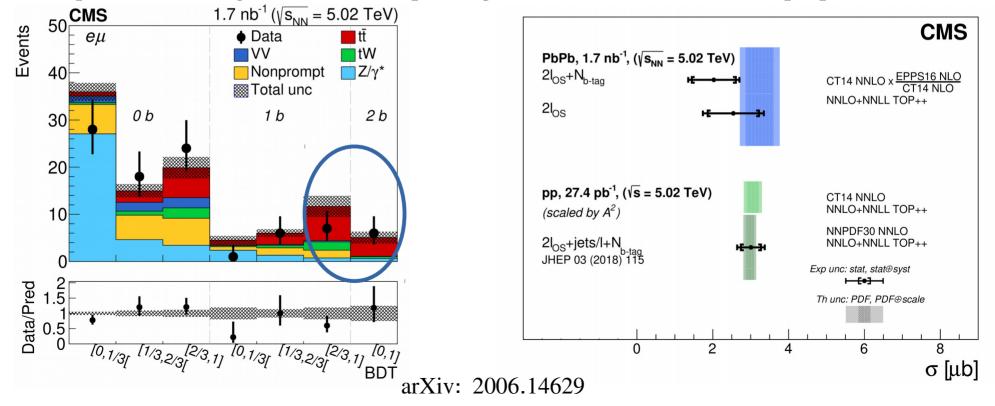
"Probe"


*00

- \blacksquare Jet quenching probes, e.g., so far dijets, Z/ χ +jet, are produced **simultaneously** with the collision
- **Top decay products have the potential to resolve the QGP evolution**
 - Leptonic & hadronic branches as "tag" & "probe"
 - qq' start interacting with the medium at **later** times
 - but how we trigger on the onset?

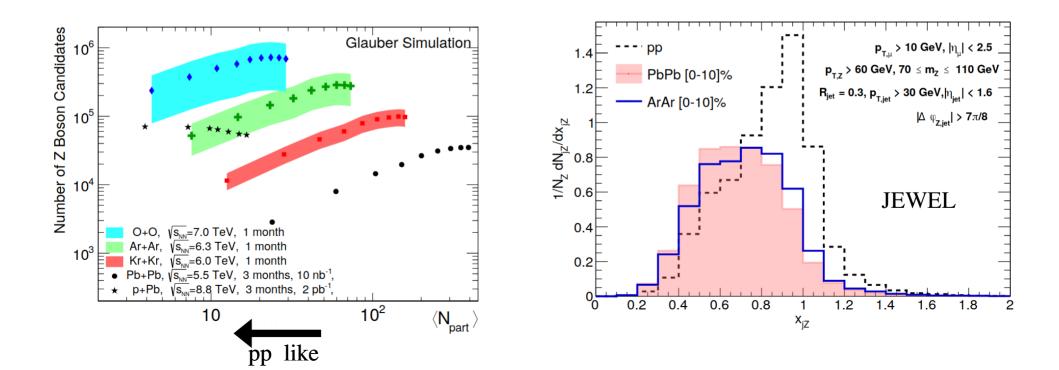

The W \rightarrow qq' "antenna" as time delayed probe 12

- \blacksquare The series of time delays are correlated with top quark $p_{\scriptscriptstyle \rm T}$
- \blacksquare $t_{tot}(p_T) = t_{top} + t_W + t_d$
 - t_d : time at which the qq' decoheres and increases further the delay on top of $t_{top} + t_w$
- Setup a toy model in which qq' is allowed or not to loose energy, e.g., $\propto L$


W mass vs top p_{T} and QGP lifetime reach

- What would be the observable to measure the amount of energy loss?
 - By reconstructing W mass vs top p_T we can trace the quenching time dependence
 - At HL-LHC, possible to distinguish low-duration scenarios (inclusively)
 - At FCC, possible to assess the QGP density evolution (i.e., 'triggering on' top p_T)

Evidence of top quarks in PbPb collisions


- **Experimental evidence of the top quark in nucleus-nucleus collisions**
 - using dileptons only or dileptons+b jets
- First step in establishing a **new tool** for probing nPDFs as well as the QGP properties

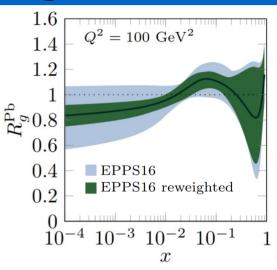
Z physics motivation for collisions with lighter ions

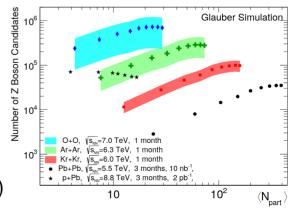
1 month of ArAr > PbPb data set in Runs 3-4

- coverage of a much broader range in $Z p_T \rightarrow jet$ -energy differential studies of quenching
- **a** case study: ratio of the jet to $Z p_T$ expected **similar** in ArAr and PbPb collisions

The Gamma Factory path to HL-LHC

Snowmass should also consider the HL-LHC scheme based on the laser Doppler cooling M. Krasny, ICHEP2020

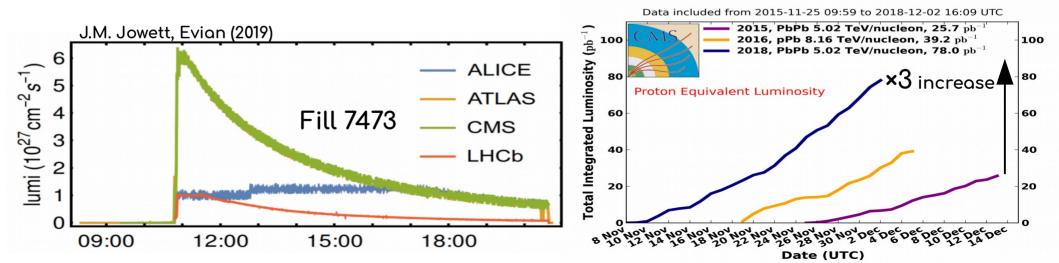

- **decrease** the transverse emittance of colliding bunches
- accelerate and collide fully stripped ion beams in the LHC ring
- relevant also for FCC-hh (take advantage of the LHC vacuum)
- **Z** The GF path is restricted to a narrow range of nuclei
 - a concrete scenario already with the isoscalar Ca(+20)
 - maximizes **partonic** and **photon-photon** luminosity
- **Z** The proposed scheme requires further studies
 - and **validation** of the GF laser-cooling simulations at SPS
- A (new) way to maximize luminosity at HL-LHC
 - optimal sharing between pp & AA modes–makes us all happy(?)
 - significantly **enlarges** the physics potential


Parameter	Value	
s ^{1/2} [TeV]	7.	
σ _{вFPP} (Ca)/σ _{вFPP} (Pb)	5 x 10⁻⁵	
σ _{had} (Ca)/σ _{tot} (Ca)	0.6	
N _b	3 x 10 ⁹	
ε _{(x,y)n} [μm] ⁽¹⁾	0.3	
IBS [h]	1-2	
β* [m]	0.15	
L _{NN} [cm-2s-1]	4.2 x 10 ³⁴	
Nb of bunches	1404	
Collisions/beam crossing	5.5	

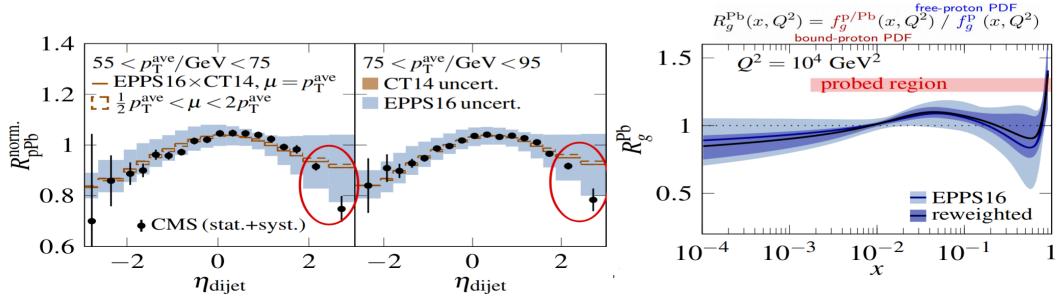
Prog. Part. Nucl. Phys. (2020) 103792

Hard and "rare" probes HI program @ HL-LHC

- Precise extractions of nPDFs crucial for
 - studying the strong interaction in the high-density regime
 - modeling the initial state needed to characterize the QGP
- ☑ LHC nuclear data are a game changer
 - different groups already include W/Z boson data in global fits
- **We** can assess the QGP density evolution
 - top quark a **new tool** profiting from lighter ions
- **a** To refine modeling of dilute systems and optimize their choice
 - the available info already indicates the potential of **lighter** systems
 - isoscalar beams even **complementary** choice to HL-LHC pp
 - of relevance for BSM searches too (e.g., J Phys G 47 (2020) 060501)



Surpassing the baseline luminosity goals


- **Z** LHC collided more types of beam, than originally foreseen, with better performance
 - In practice, we've come close to the "HL-LHC" performance with PbPb and pPb collisions
- In 2018 the peak luminosity at IP1/5 reached ×6 the design without magnet quenches
 Opens up further opportunities for high-density QCD studies
 - For probes **not accessible** so far due to lower luminosity or energy
 - All 4 experiments participate \rightarrow complementary phase space regions, cross checks CMS Integrated Luminosity Delivered, PbPb+pPb

Nuclear gluon PDFs: constraints scarce so far

- Stringent constraints with CMS dijet events
- Data consistent with NLO pQCD predictions with nuclear PDFs (EPPS16)
 - Enhanced **suppression** at forward y
- Significant reduction in EPPS16 uncertainties after reweighting

Phys. Rev. Lett. **121** (2018) 062002 EPJC **79** (2019) 511

