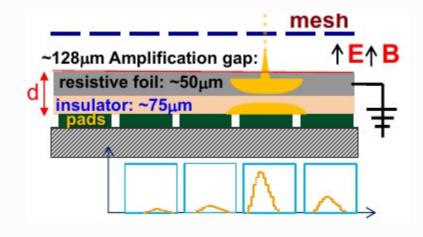

Time Projection Chambers for SAND

S.Bolognesi, A.Delbart, G.Eurin, P.Granger (IRFU, CEA)

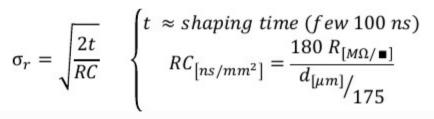
SAND DUNE meeting – 30 July 2020

SAND TPCs

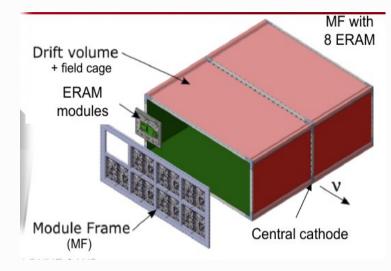
Momentum reconstruction:

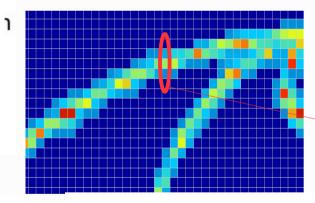

Momentum resolution ~5-10% space point resolution depends on magnetic field and pad granularity Momentum scale ~2% depends on uniformity of Bfield, Efield, alignment \rightarrow can be calibrated with K

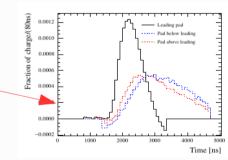
Particle identification through dE/dx:


Energy resolution ~10% (~45% more ionization for electrons than muon/pions)

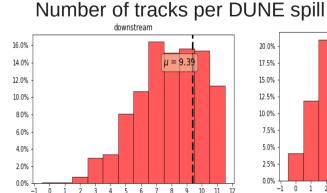
A detector which we know how to build and stable!

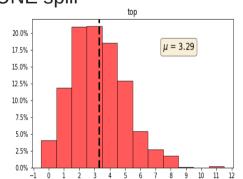

The detector: resistive bulk Micromegas

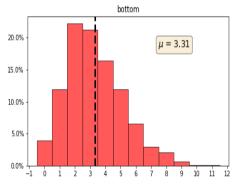

Charge spreading over multiple pads



ND280 upgrade TPC




Test beam signal and event display



 Study on-going for SAND: optimization of pad granularity / resistivity → optimization of resolution with SAND occupancy

Electronics

2x T2K/ HA-TPC

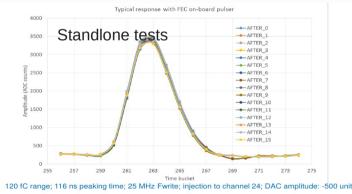
4 44 - 0 47	Value	Parameter
1,41 x 0,47 0,77 x 3 x	$2.0 \times 0.8 \times 1.8$	Overall $x \times y \times z(m)$
0,11 × 07	90	Drift distance (cm)
	0.2	Magnetic Field (T)
	275	Electric field (V/cm)
	95 - 3 - 2	Gas Ar-CF4-iC4H10 (%)
	7.8	Drift Velocity cm/µs
	265	Transverse diffusion $(\mu m / \sqrt{cm})$
	1000	Micromegas gain
340x420 (340x420 (32)	Micromegas dim. z×y (mm)
10x11	10×11	Pad z × y (mm)
50688	36864	N pads
	800	el. noise (ENC)
	100	S/N
2 E	25	Sampling frequency (MHz)
2x9	511	N time samples

7 x 2.3 x 2.3

3 2+1 DUNE SAND

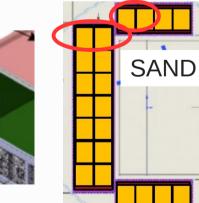
(44)

ERAM ND280 Upgrade: 8 ASICs 2 Front-End Card x 1 Front-**End Mezzanine Card**



First estimates for SAND: downstream TPC: 200x77cm2 \rightarrow 2x14 ERAM (42x34 cm2)

top/bottom TPCs: 2x57x141cm2


 \rightarrow 2x2x4 ERAM (42x34 cm2)

1152 channel/ERAM → 50688 channels \rightarrow ~1000 ASICs

ND280 Upgrade ERAM modules

Electronics

First estimates for SAND:

 \rightarrow 2x14 ERAM (42x34 cm2)

 \rightarrow 2x2x4 ERAM (42x34 cm2)

1152 channel/ERAM

 \rightarrow 50688 channels

 \rightarrow ~1000 ASICs

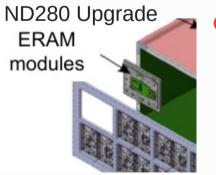
downstream TPC: 200x77cm2

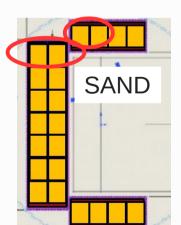
top/bottom TPCs: 2x57x141cm2

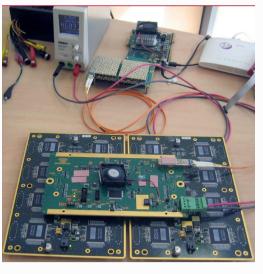
2x T2K/ HA-TPC

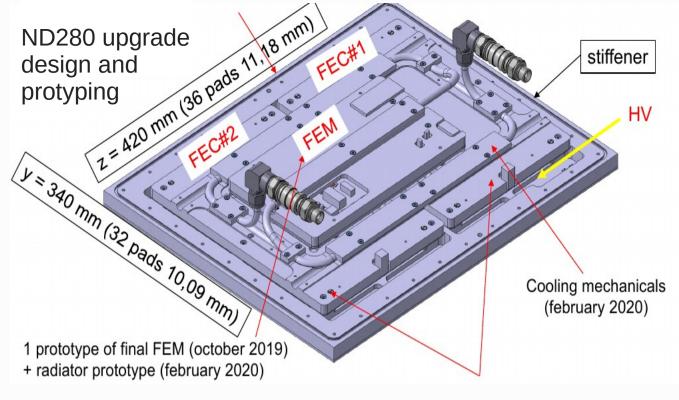
Parameter	Value	
Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$	1,41 x 0,47 x 0,77 x 3 x 2
Drift distance (cm)	90	0,11 × 5 × 2
Magnetic Field (T)	0.2	
Electric field (V/cm)	275	
Gas Ar-CF4-iC4H10 (%)	95 - 3 - 2	
Drift Velocity cm/µs	7.8	
Transverse diffusion $(\mu m / \sqrt{cm})$	265	
Micromegas gain	1000	
Micromegas dim. z×y (mm)	340x420 (32)	340x420 (44
Pad z × y (mm)	10 × 11	10x11
N pads	36864	50688
el. noise (ENC)	800	
S/N	100	
Sampling frequency (MHz)	25	2 EF
N time samples	511	2x8

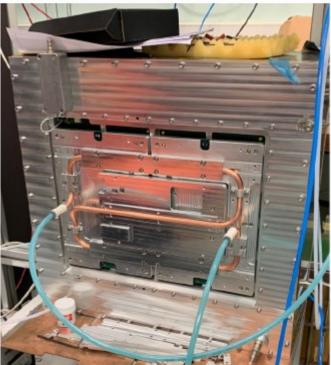
2,3 2.3

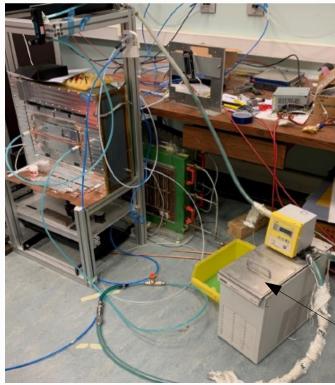

3 2+1 DUNE SAND

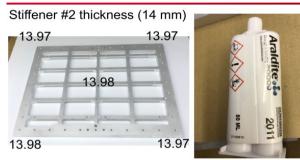

4)


RAM ND280 Upgrade: **ASICs** 2 Front-End Card x 1 Front-**End Mezzanine Card**


Back-End: 1 TDCM per ND280 upgrade TPC

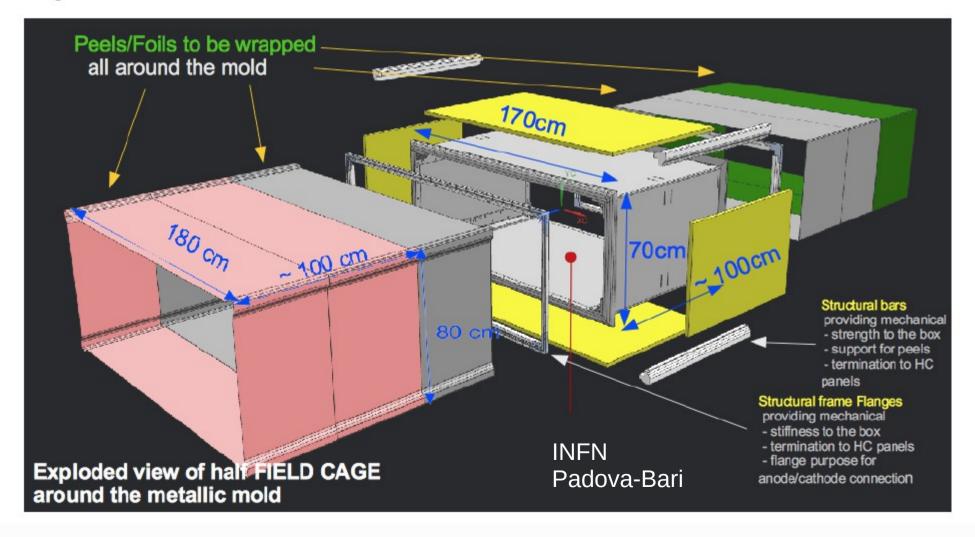






Mechanics/ cooling

Full test of procedures



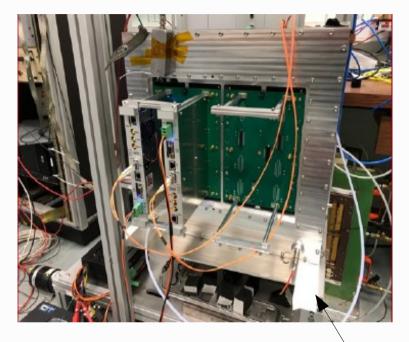
Cooling tests with new chiller at Saclay re-usable for SAND tests

ND280 upgrade field cage

To keep $\Delta E/E \leq 10^{-4}$ confined at <1cm from FC walls, the TPC cage requirements are : Cathode flatness better than 0.1mm, Micromegas plane flatness better than 0.2 mm, Cathode/Anode planes parallel to within 0.2mm, Field Cage walls flatness better tham 0.3mm Voltage divider resistors matched within rms ~ 0.1%

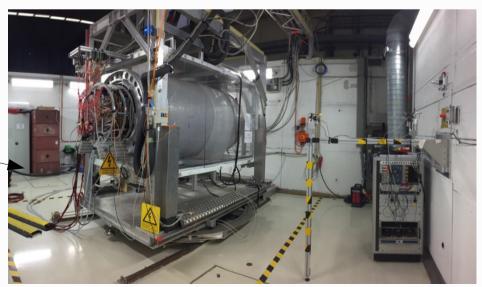
Protoypes for ND280 upgrade

- test beam at CERN 2018: first prototype with large pads and resistive MM
- *test beam at DESY 2019:* optimized pad size and resistivity (with magnetic field)
- planned *test beam at DESY 2020* (with field cage prototype, final electronics and ERAM design)
- *multiple detector protypes* tested on dedicated **cosmic test bench at Saclay**
- CERN platform for field cage tests and final TPC test with comsics

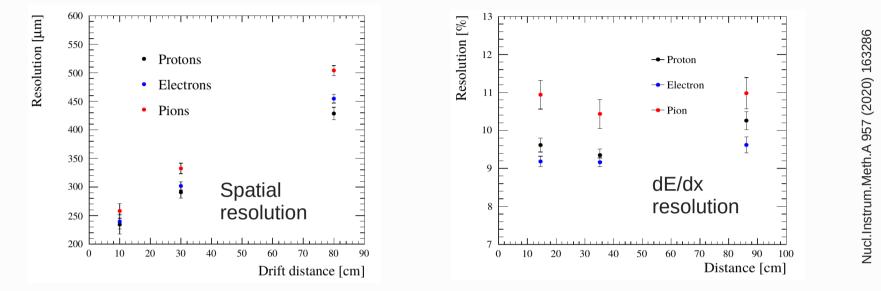

A lot of expertise developed and infrastructure built

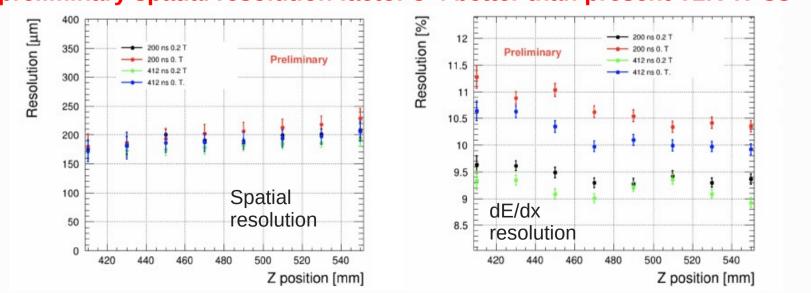
SAND dedicated prototyping (30k financement secured):

- new pad size and RC values: resistivity of DLC foil + glue thickness


- can be installed in Saclay cosmic bench (PMTs for trigger, gas, cooling, electronics, DAQ, ... and even analysis code!)

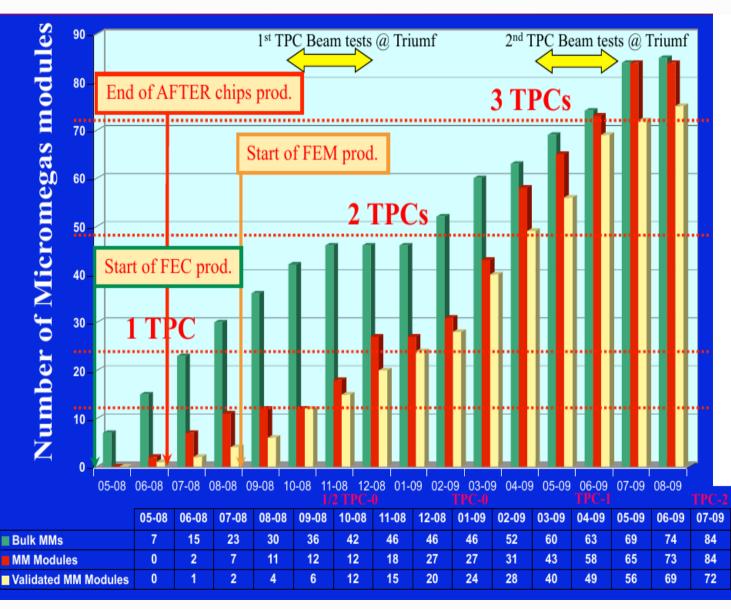
Extensive tests on-going for ND280 upgrade


- Cosmic test bench @ IRFU Saclay
 → available for SAND R&D
- Test beam at CERN in 2018
- Test beam at DESY, with magnetic field, in 2019
- Test beam at DESY planned in 2020 with field cage prototype, complete ERAM (detector, mechanics, electronics, cooling)
- Installation at ND280 in summer 2022



Performances

Results from preliminary prototype at CERN in 2018: pad 9.8x7mm² with large R and 200microns glue


Even better results at **DESY in 2019 with final pad design** ($10x11mm^2$) **and improved RC:** R~0,25 Mohm/sq and 75 microns glue \rightarrow RC~50 ns/mm² **preliminary spatial resolution factor 3-4 better than present T2K TPCs**

arXiv:2005.05695

T2K TPC: a success story

The decision on technology must consider the prospects for production

Final percentage of good modules/produced: Micromegas (82/89) 92% FEC (499/514) 97% FEM (84/93) 90%

12 **dead MM channels** over 124272 channels (0.01%)

10 years of operation with only 1 FEM failure and 2HV filters to repair

08-09

85

84

75

Production for ND280 upgrade

The Resistive Micromegas (ERAM) is also a bulk-micromegas: mature technology, mastered by CERN, IRFU & some PCB industrials

 ERAM integrates a new element: DLC foil to provide the resistivity for the charge spreading. ND280 upgrade (production of 32 modules) will secure the path for production for SAND (DLC procurements, production yield, ...)

ERAM design almost validated for production : only RC optimization through the choice of glue thickness needs to be fixed after last prototype tests by this fall

 \rightarrow series production of ERAM detector & its Front-End Electronics (FEC & FEM) planned to start at the end of the year

SAND TPC cost estimate

Including only hardware (no manpower, travels, common funds, technical coordination, ...)

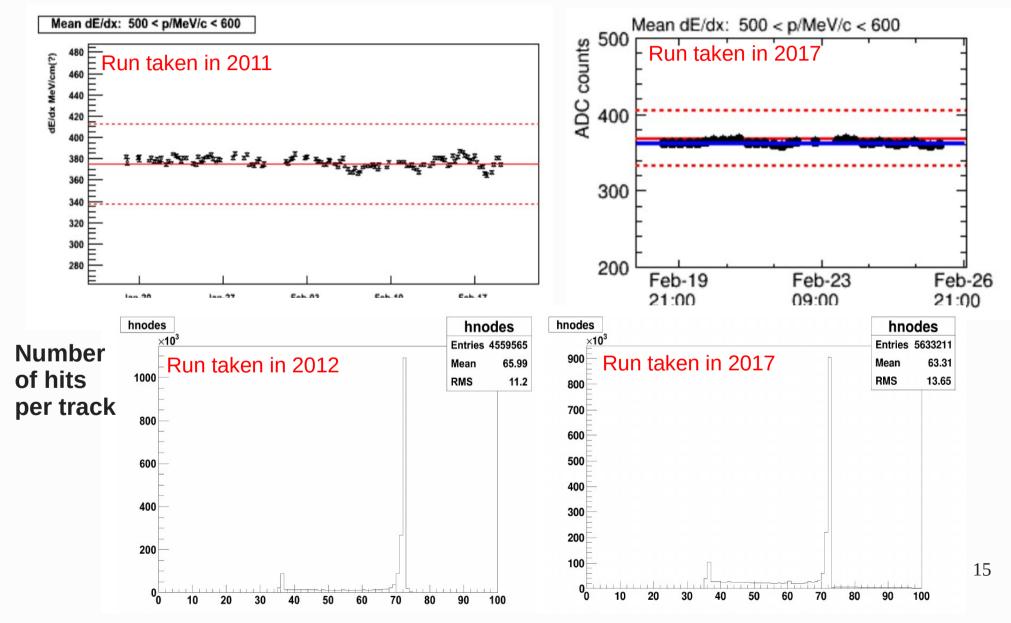
Total	2260 keuros	
Detectors ERAM	300 keuros	
Cooling	165 keuros	
Services (HV, LV, gas system)	350 keuros	cage (as in ArgonCube)
Field cage	1.000 keuros	 Highly depends on final design: interesting R&D on resistive field
Front-End + Back-End	215 keuros	
Chips	230 keuros	Interest of IRFU to design a new chip

Except for the cage, these are pretty accurate estimates (excluding only shipping and integration of TPC in KLOE)

Summary

The expertise and infrastructures developed for ND280 vertical TPCs and ND280-Upgrade horizontal TPCs are a phenomenal advantage in the path to build SAND TPCs

Studies on-going to adapt the design: some financing (30k euros) secured to produce prototypes to install on Saclay comsics test-bench


Clear path to design and build ERAM, electronics, mechanics, infrastructures (gas, cooling, ...)

Preliminary cost estimates available. Discussion on-going on the financing:

- design of SAND at day-0? \rightarrow spending profile
- looking forward to collaborators

Astonishing stability/reliability in 10 years

Mean dE/dx from cosmics

