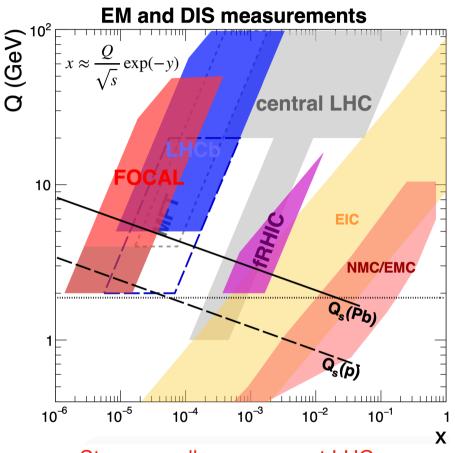

The Forward Calorimeter project in ALICE

Constantin Loizides (ORNL) on behalf of the FoCal collaboration

26.08.2020 (v1)

See talk from 08/05/2020


Forward isolated photons and the LHC small-x program

- Measure isolated photons forward
 - At LO more than 70% from Compton with direct sensitivity to gluon density
 - Not affected by final state effects nor hadronization
 - Uniquely low-x coverage at LHC (similar to LHeC)

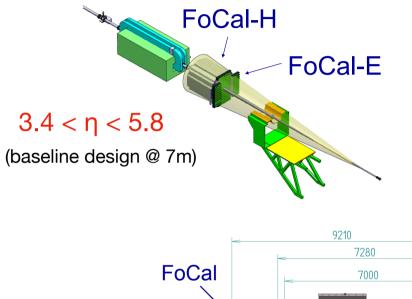
Goal

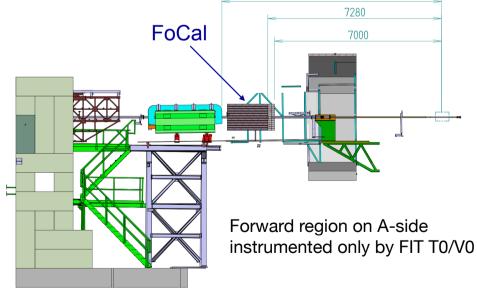
- Explore non-linear QCD evolution at small x
 - Constrain nuclear PDFs at small x
- Logarithmic dep. of QCD evolution on Q and x, requires several measurements over largest possible range

2

Strong small-x program at LHC

- Various experiments/measurements: isolated γ, DY, open charm (+UPC)
- Test factorization/universality
- Complementary to fRHIC + EIC

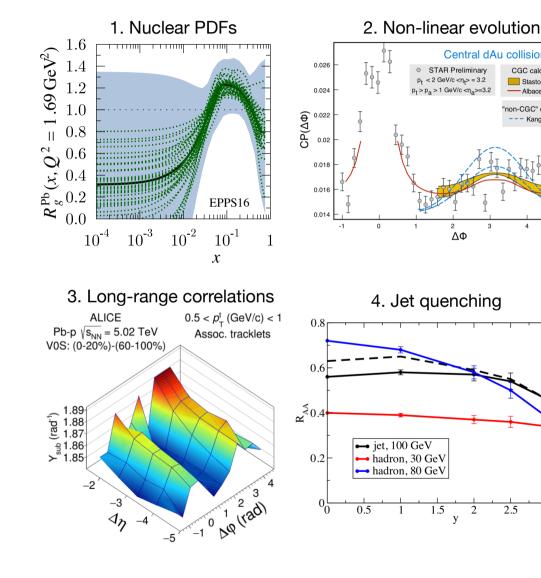

The FoCal proposal


FoCal-E: high-granularity Si-W sampling calorimeter for photons and π^0 **FoCal-H**: conventional metal-scintillator sampling calorimeter for photon isolation and jets

Observables:

- π⁰ (and other neutral mesons)
- Isolated (direct) photons
- Jets (and di-jets)
- J/ψ (Y) in UPC
- W, Z
- Event plane and centrality

Letter of Intent: CERN-LHCC-2020-009



Physics programme

- 1. Quantify nuclear modification of the gluon density at small-x
 - Isolated photons in pp and pPb collisions
- 2. Explore non-linear QCD evolution
 - Azimuthal $\pi^{0-}\pi^{0}$ and isolated photon- π^{0} (or jet) correlations in pp and pPb collisions
- 3. Investigate the origin of long range flow-like correlations
 - Azimuthal π⁰-h correlations using FoCal and central ALICE (and muon arm) in pp and pPb collisions
- 4. Explore jet quenching at forward rapidity
 - Measure high p_T neutral pion production in PbPb
- 5. Other measurements
 - Jets and dijets in pp/pPb and UPC
 - Quarkonia in UPC (and pp*)
 - Photon and pion HBT (*)
 - W,Z in pp/pPb?
 - Isolated photons in PbPb (*)
 - Measurements at 14 TeV
 - Universality at small-x
 - Saturation in pp
 - High-x (>0.1) gluon constraints (*)

(*=feasibility not yet explored)

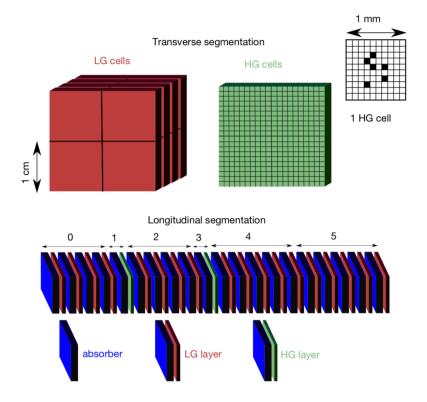
CGC calculations

non-CGC" calculations

Kang et a

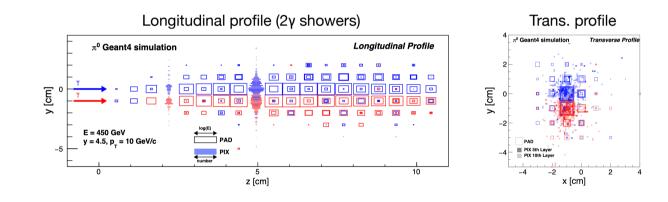
3.5

2.5


v

Stasto et al

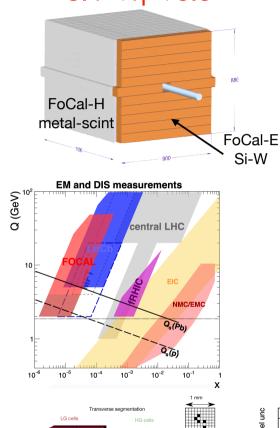
Central dAu collisions


ΔΦ

FoCal-E conceptual design

• Main challenge: Separate γ/π^0 at high energy

- Two photon separation from π^0 decay (p_T=10 GeV, \eta=4.5) ~5mm
- Requires small Molière radius and high granularity readout
- Si-W calorimeter with effective granularity $\approx 1 mm^2$

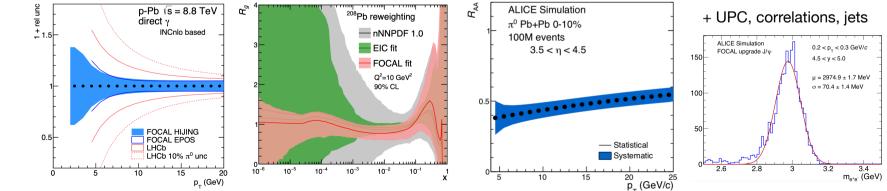


Studied in simulations 20 layers: W(3.5 mm \approx 1X₀) + silicon sensors Two types: Pads (LG) and Pixels (HG)

- Pad layers provide shower profile and total energy
- Pixel layers (ALPIDE) provide position resolution to resolve overlapping showers

For performance studies, and R&D, see talk from 08/05/2020

$3.4 < \eta < 5.8$



LG cels HG cells LG cells HG cells Longitudinal segmentation 0 1 2 3 4 5 Longitudinal segmentation 0 1 2 3 4 5 HG layer HG layer

Summary

CERN-LHCC-2020-009

- FoCaL very forward, highly-granular Si+W "shower tracking" ECal with HCal
 - Rich physics programme in pp, pPb, PbPb and UPC
 - Main physics goal to explore non-linear QCD evolution
 - Isolated photons, UPC, correlations
 - Excellent performance over large η down to low p_T with small uncertainties as necessary to constrain nPDFs and to observe deviations from linear evolution
 - Strong small-x program at LHC together with LHCb; smaller x-region than at fRHIC and EIC
- Exciting calorimeter concept and technology
 - Large experience with prototypes
 - Technology synergy (ALPIDE, HGCROC)
 - Feasibility (choice of technology, integration, adequate resources) established
- Challenging and interesting times ahead towards the TDR
 - Individuals and institutions are very welcome to join the effort

