N3LO computations for Drell-Yan processes

Claude Duhr in collaboration with Falko Dulat and Bernhard Mistlberger

EF05/EF06 meeting:
NNLO and N3LO computations for PDF analyses

23 September 2020

Towards N3LO accuracy

- Standard approach to LHC computations: QCD factorisation + perturbation theory.

$$
\begin{array}{rlrl}
\sigma_{p p \rightarrow X}(S) & =\sum_{i, j} \int_{0}^{1} d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{i j \rightarrow X}\left(\hat{s}, \mu_{F}^{2}\right) & S & =E_{C o M}^{2} \\
\hat{s} & =x_{1} x_{2} S \\
\hat{\sigma}_{i j \rightarrow X} & =\hat{\sigma}_{0}+\alpha_{s}\left(\mu_{R}\right) \hat{\sigma}_{1}+\alpha_{s}\left(\mu_{R}\right)^{2} \hat{\sigma}_{2}+\ldots & \alpha_{s}\left(m_{Z}^{2}\right) & =0.118
\end{array}
$$

- Naive counting: NLO $\longrightarrow 10 \%$ NNLO $\longrightarrow 1 \%$
\Rightarrow We know several examples where this naive counting fails (e.g. Higgs production).
- Goal: Compute N3LO corrections (at least for a selected class of processes.

The cross section

- The NLO cross section:

Virtual corrections ('loops')

Real emission

- The NNLO cross section:

Double virtual

Real-virtual

Double real

The cross section

- The N3LO cross section:

Triple virtual

Real-virtual
squared

Double virtual real

Double real virtual

Triple real

State-of-the-art

- Available (inclusive) results at N3LO at hadron colliders
[Anastasiou, CD, Dulat, Herzog, Mistlberger;
\Rightarrow Higgs production in gluon-fusion. Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger]
\Rightarrow Higgs production in bottom-fusion in 5 flavour scheme.
(+ matching to 4FS)
[CD, Dulat, Mistlberger; CD, Dulat, Hirschi, Mistlberger]
\Rightarrow Drell-production (photon and W). [CD, Dulat, Mistlberger]
\Rightarrow di-Higgs in gluon fusion.
\Rightarrow VBF (in DIS approach).

Energy variation

Higgs production:
Nice convergence of perturbative expansion.

Choice of central scales:
ggH: $\mu_{F}=\mu_{R}=m_{H} / 2$
$\mathrm{bbH}: \mu_{F}=m_{H} / 4, \quad \mu_{R}=m_{H}$

Q-variation (photon)

$\begin{array}{lllllllllllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150\end{array}$ Q [GeV]

Q-variation (W)

Scale dependence (photon)

左
 Scale dependence (W)

Scale dependence

- For Higgs (ggH \& bbH): Scale bands overlap very well (for smallish μ_{F}).
- For DY (photon $\&$ W): Scale bands do not overlap over a large range of virtualities.
\Rightarrow Difference in central values: few \%.
\Rightarrow For both μ_{F} and μ_{R}.
- All results obtained with pdf4lhc_nnlo_mc.
- Observation: Large cancellation between channels for DY at NNLO and N3LO (both photon and W).
\Rightarrow No cancellation for Higgs.

Cross section ratios

$$
R_{X Y}(Q)=\frac{\sigma_{X}(Q)}{\sigma_{Y}(Q)}, \quad X, Y \in\left\{W^{ \pm}, \gamma^{*}\right\}
$$

- Prescriptions for ratios:
\Rightarrow A: Ratio of expansions, correlated scales.
\Rightarrow B: Ratio of expansions, uncorrelated scales.
$\Rightarrow A^{\prime}$: Expansion of ratio, correlated scales.
\Rightarrow B': Expansion of ratio, uncorrelated scales.
\Rightarrow C: Progression of series, correlated scales:

$$
\delta(\text { pert. })= \pm\left|1-\frac{R_{X Y}^{(n)}(Q)}{R_{X Y}^{(n-1)}(Q)}\right| \times 100 \%
$$

Cross section ratios

$$
R_{W^{+} W^{-}}\left(Q=m_{W}\right)
$$

	NLO		NNLO		$\mathrm{N}^{3} \mathrm{LO}$	
$\mu^{\text {cent }}$	m_{W}	$m_{W} / 2$	m_{W}	$m_{W} / 2$	m_{W}	$m_{W} / 2$
A	$1.342_{-0.00 \%}^{+0.10 \%}$	$1.342_{-0.05 \%}^{+0.07 \%}$	$1.348_{-010 \%}^{+0.12 \%}$	$1.349_{-0.11 \%}^{+0.15 \%}$	$1.350_{-0.06 \%}^{+0.05 \%}$	$1.350_{-005 \%}^{+0.04 \%}$
A^{\prime}	$1.343^{-0.13 \%}$	$1.344_{-0.10 \%}^{+0.010 \%}$	$1.349^{-0.13 \%}$	$1.351_{-013 \%}^{+0.33 \%}$	$1.350^{+0.022 \%}$	$1.350^{+0.00 \%}$
B	$1.342_{-8.08}^{+8.82}$	$1.342_{-11.4 \%}^{+12.9 \%}$	$1.348_{-2.31 \%}^{-+.26 \%}$	$1.349_{-2.27 \%}^{++.24 \%}$	$1.350_{-114 \%}^{+2.21 \%}$	$1.350_{-1.14 \%}^{+2.21 \%}$
B^{\prime}	$1.343_{-7.40 \%}^{+5.28 \%}$	$1.344_{-9.97 \%}^{+18.09 \%}$	$1.349_{-2.63 \%}^{+1.85 \%}$	$1.351_{-2.24 \%}^{+2.22 \%}$	$1.350_{-2.25 \%}^{+2.26 \% \%}$	$1.350_{-2.70 \%}^{+4.45 \%}$
C	$1.342_{-0.99 \%}^{+0.99 \%}$	$1.342_{-0.58 \%}^{+0.58 \%}$	$1.349_{-0.52 \%}^{+0.52 \%}$	$1.349_{-0.53 \%}^{+0.53 \%}$	$1.350_{-0.15 \%}^{+0.15 \%}$	$1.350_{-0.11 \%}^{+0.112 \%}$

\Rightarrow Almost no difference between "expansion of ratio" or "ratio of expansions" already at lower orders.
\Rightarrow Large difference for scale variation between correlated and uncorrelated.
\Rightarrow Ratio is extremely stable in perturbation theory.

Cross section ratios

$$
\begin{gathered}
R_{W^{+} W^{-}}(Q) \\
\mu^{\mathrm{cent} .}=Q
\end{gathered}
$$

pdf4lhc_nnlo_mc

$\mathrm{PDF}+\alpha_{s}$-uncertainty

\Rightarrow Central set: pdf4lhc_nnlo_mc.
\Rightarrow Uncertainty band obtained following PDF4LHC recommendation.

$\mathrm{PDF}+\alpha_{s}$-uncertainty

\Rightarrow Red band obtained scale variation (pdf4lhc_nnlo_mc).
\Rightarrow Strong coupling taken from PDF set.

Missing N3LO PDFs

- We do not have N3LO PDFs
- This introduces a mismatch in our calculation.
- Estimate of the uncertainty:

$$
\delta_{\mathrm{PDF}}^{\mathrm{N}^{3} \mathrm{LO}}=\frac{1}{2}\left|\frac{\sigma_{\mathrm{NNLO}-\mathrm{PDFs}}^{\mathrm{NNLLO}}-\sigma_{\mathrm{NLO}}^{\mathrm{NNLO}}}{\sigma_{\mathrm{NNLO}}^{\mathrm{NNLO}} \mathrm{PDFs}}\right|
$$

- The factor $1 / 2$ takes into account that this estimate is most likely overly conservative.
$\Rightarrow c f$. convergence pattern of DIS.

[Moch, Vermaseren, Vogt]

园
 Missing N3LO PDFs

Summary

$$
Q[\mathrm{GeV}] \mathrm{K}_{\mathrm{QCD}}^{\mathrm{N}^{3} \mathrm{LO}} \quad \delta_{\text {scale }} \quad \delta_{\mathrm{PDF}} \quad \delta_{\mathrm{PDF}}^{\mathrm{N}^{3} \mathrm{LO}}
$$

VBF (DIS, 14 TeV) $\quad 0.999{ }_{-0.05 \%}^{+0.05 \%}$
[Dreyer, Karlberg]

