

Calibration of the ProtoDUNE-SP detector using cosmic muons

Graham Chambers-Wall, Fermilab SULI Intern Supervisors: Wanwei Wu and Tingjun Yang ProtoDUNE sim/reco Meeting 8 July 2020

Overview

- ProtoDUNE-SP data charge and energy calibration
 - Corrections for space charge effects (SCE) and electron lifetime corrections
- Analysis follows calibration technique developed by Ajib Paudel and Tingjun Yang using Ajib's calibration code
- Examined $\frac{dQ}{dx}$ distribution with and without lifetime corrections
- Determined calibration constants $\left(\frac{dE}{dx}\right)$ for ProtoDUNE-SP data (run 5759, 5770, and 5841)

Calibration code by Ajib Paudel:

https://wiki.dunescience.org/wiki/DQdx_and_dEdx_calibration_instructions

🚰 Fermilab

Detector Calibration Corrections

• Space Charge Effects

- Electric field distortion due to ions
- Distortion alters particle reconstruction
- Space charge effects removed based on electric field map measured from cosmic muons
- Electron Lifetime Corrections
 - Ionized electrons captured by impurities (H₂O and O₂) and Ar²⁺
 - Corrections make detector response $\left(\frac{dQ}{dx}\right)$ uniform
 - Measured electron lifetime from purity monitor data and recorded in the ProtoDUNE-SP calibration database

ProtoDUNE-SP Calibration Database:

https://wiki.dunescience.org/wiki/ProtoDUNE-SP_Calibration_Database

🌫 Fermilab

Crossing Muon Selection

- Track must pass through cathode plane array
- Track must start and end 10 cm from anodes, 50 cm from top or bottom, or 50 cm from sides
- Plane 2:
 - Remove tracks with $60^{\circ} < |\theta_{\chi z}| < 120^{\circ}$ or $|\theta_{\chi z}| < 10^{\circ}$ or $80^{\circ} < |\theta_{\gamma z}| < 100^{\circ}$
- Plane 1:
 - If x position is between -360 and 0 cm, remove tracks with $|\theta_{\chi z}| < 130^{\circ}$ or $80^{\circ} < |\theta_{yz}| < 100^{\circ}$
 - If x position is between 0 and 360 cm, remove tracks with $|\theta_{xz}| > 40^\circ$ or $80^\circ < |\theta_{yz}| < 100^\circ$
- Plane 0:
 - If x position is between -360 and 0 cm, remove tracks with $|\theta_{xz}| > 40^{\circ}$ or $80^{\circ} < |\theta_{yz}| < 100^{\circ}$
 - If x position is between 0 and 360 cm, remove tracks with $|\theta_{xz}| < 130^\circ$ or $80^\circ < |\theta_{yz}| < 100^\circ$

Figures showing geometry of ProtoDUNE-SP detector and definitions of θ_{xz} and θ_{yz}

🛟 Fermilab

Stopping Muon Selection

- Angles: removed 65° < |Θ_{XZ}| < 115° and 70° < |Θ_{YZ}| < 110°
- Early/late hits: removed tracks with peak time < 250 ticks and peak time > 5900 ticks
- Track length: removed tracks with length < 100 cm or > 700 cm
- Position: removed tracks with start or end z coordinate between 226 and 236 cm or z coordinate between 456 and 472 cm

Angular cuts and early/late hits changed from Ajib's code to match selection from

https://indico.fnal.gov/event/23989/contributions/74784/attachments/ 46641/56015/APS_April_meeting_2020.pdf Figures showing geometry of ProtoDUNE-SP detector and definitions of θ_{xz} and θ_{yz}

Charge Calibration

Figures of $\frac{dQ}{dx}$ as a function of x without lifetime correction (top row) and with lifetime correction (bottom row) for runs 5759 (left), 5770 (middle), and 5841 (right)

🚰 Fermilab

Calibration Constants

Modified Box Model:

$$\left(\frac{dE}{dx}\right)_{\text{calibrated}} = \left(\exp\left(\frac{(\frac{dQ}{dx})_{\text{calibrated}}}{C_{\text{cal}}}\frac{\beta'W_{\text{ion}}}{\rho\mathcal{E}}\right) - \alpha\right)\left(\frac{\rho\mathcal{E}}{\beta'}\right),$$

where,

 C_{cal} = Calibration constant used to convert ADC values to number of electrons,

 $W_{\rm ion} = 23.6 \text{ x } 10^{-6} \text{ MeV/electron}$ (the work function of argon),

 \mathscr{E} = ProtoDUNE-SP *E* field based on the space charge maps,

 ρ = 1.38 g/cm³ (liquid argon density at a pressure of 124.106 kPa),

 $\beta' = 0.212 \, (\text{kV/cm})(\text{g/cm}^2)/\text{MeV}$, and

 $\alpha = 0.93.$

Minimum calibration constant (10 ⁻³ ADC/electron)			
Plane	Run 5759	Run 5770	Run 5841
0	5.414±0.0064	5.375±0.0061	5.516±0.0064
1	5.387±0.0065	5.345±0.0061	5.517±0.0063
2	4.935±0.0068	4.884±0.0053	5.033±0.0076

Uncertainty of C_{cal} is given by $\Delta \chi^2 = \chi^2 - \chi^2_{Min} = 1$ arxiv 1907.11736 $\frac{dE}{dx}$ values are fit using the Modified Box Model function from the calibrated $\frac{dQ}{dx}$ values from the MIP region of the stopping muon. A quadratic fit is applied to find minimum χ^2 for each plane.

χ^2 as a function of Calibration Constant Plane 2 of Run 5759

Absolute Energy Calibration

Run 5770 dE/dx vs Residual Range

dedx vs residual rang

Entries

68000

Summary

- Applied lifetime corrections
 - $-\frac{dQ}{dx}$ distribution is relatively flat after correction
- Determined calibration constants
 - Constants for runs 5759 and 5770 are consistent with each other
- Absolute energy calibration
 - Theoretical $\frac{dE}{dx}$ vs residual range fits well with data

10 7/8/2020 G. Chambers-Wall | Calibration of the ProtoDUNE-SP detector using cosmic muons