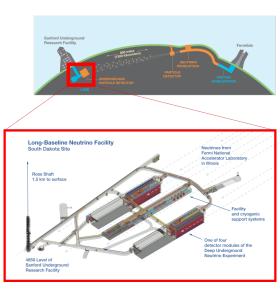
ProtoDUNE Dual Phase: Design, Construction and First Results ICHEP 2020

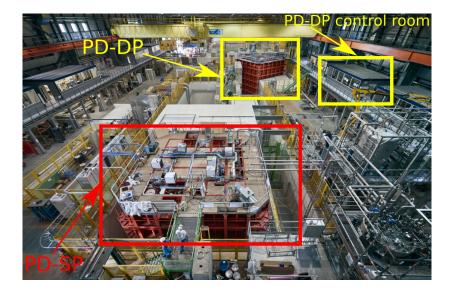
Guillaume Eurin

for the DUNE collaboration

CEA-Saclay/IRFU

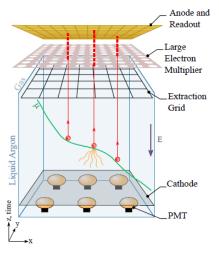
2020/07/29



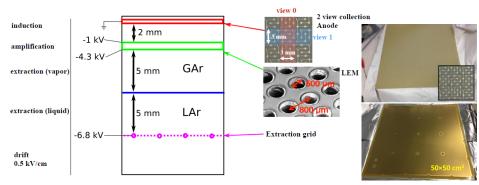

Deep Underground Neutrino Experiment

Primary physics goals:

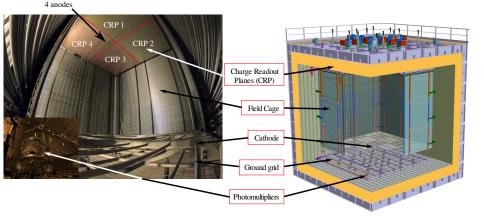
- ν oscillations
- δ_{CP}, θ₂₃, θ₁₃
- ν mass ordering
- Supernova burst neutrinos
- BSM processes
- 4 × 17 kt LArTPCs far detector 1.5 km underground
- ProtoDUNE-DP and ProtoDUNE-SP: far detector LAr R&D program
- ProtoDUNEs installed at CERN neutrino platform



ProtoDUNE-DP @ CERN neutrino platform


Operating principle of ProtoDUNE-DP

Dual Phase


- Cryostat filled with 720 t LAr
- PMTs detect scintillation light at the bottom
- Electrons drifted vertically
- Electrons extracted from liquid into gas phase
- Charge signal amplified and read out at the top
- 3D track reconstruction

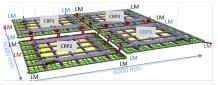
Operating principle of ProtoDUNE-DP

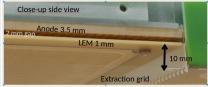
- Homogeneous 0.5 kV/cm drift field (cathode + field cage)
- \blacktriangleright Extraction field \sim 2.5 kV/cm between grid and LEM bottom
- Amplification ~ 20 in LEMs holes
- Readout in two directions (3.125 mm pitch) by collection on anode via field between LEM top electrode and anode
- Challenge: instrument large surface with small GAr/LAr gap

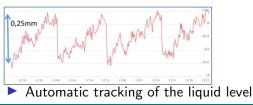
ProtoDUNE-DP @ CERN

Main detector components installed in March 2019

- Temporary Cryostat Opening closed in May 2019
- Manhole sealed in June 2019


Commissioning of ProtoDUNE

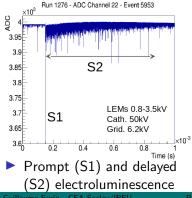

- March 2017: start of construction of the cryostat
- 2018: Start of detector installation
- 13/06 04/07 2019: Cryostat closure then purge and cooling down
- ▶ 05/07 09/08 2019: LAr filling
- 12/08/2019: Start TPC commissioning
- ▶ 29/08/2019: First tracks from cosmics



Charge Readout Planes and readout electronics

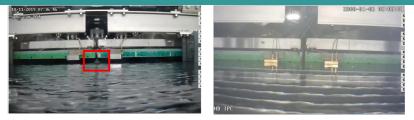

• CRP planarity of \pm 2 mm

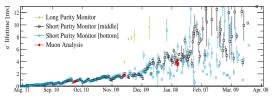
- 12 µTCA crates
- 10 digitizer cards per crate @ 10 GBit/s
- ► 64 channels per card



 FE cryo-amplifiers accessible during operation

Photodetection system in ProtoDUNE-DP



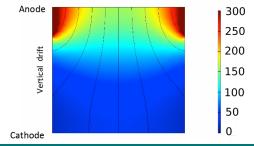

- 36 × 8" cryogenic PMTs Hamamatsu R5912-02-mod using wavelength shifter (PEN / TPB coating)
- Scintillation light measured since 06/19
- Position optimized for light collection in cosmic rays events
- Light Calibration System for PMT stability estimation using blue LEDs and optical fibers
- S/N > 11 for SPE at $G = 10^7$ (requirement of S/N > 5)
 - Analyses: performance (PEN/TPB efficiency, timing resolution), light propagation, muon detection, SPE background

2020/07/29 9 / 15

Cryogenics conditions and argon purity

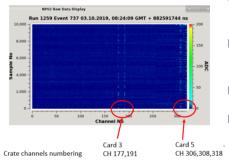
- Bubbles and waves: location known but origin unclear
- Liquid surface instabilities mitigated by high pressure cycles

- 3 purity monitors: two short 17 cm-long and one long 48 cm-long
- Required electron lifetime of 3 ms exceeded

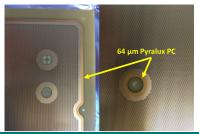

Filter clogging issues in LAr recirculation, improved in November 2019

Electric field inhomogeneity in ProtoDUNE-DP

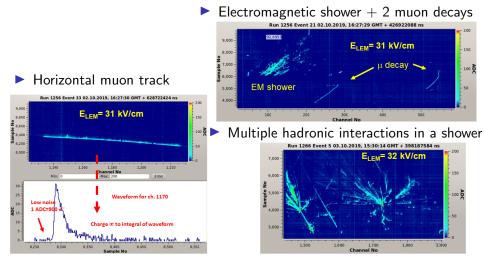
- ▶ Short between field cage and HV extender (08/19)
 ⇒ electric field very inhomogeneous
- Different electric field could impact TPC performances (recombination, electron velocity, etc.)
- ▶ Reparation of HV extender performed in June 2020
 ⇒ ~ 1.5 m of LAr removed and faulty connection cut
 ▶ New data taking next August


Electric field map (steady state) with Space Charge and 50 \underline{kV} from the Power Supply

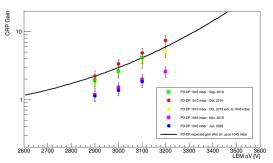
Guillaume Eurin CEA-Saclay/IRFU


ProtoDUNE Dual Phase

Sparking and PD-DP Phase II improvements


- LEM sparking rate target: ≤ 1 spark/CRP/hour not achieved
- LEM re-designed to reduce sparking:
 - Insulator around edges and fixation
 - Segmented and resistive LEMs under study (reduce sparking energy)

- ▶ 6kV extraction grid sparking → damages to FE electronics
- Origin unclear: grid wires immersed by 4-5 mm in LAr
- Extensive HV stability tests
- Anode re-designed to protect FE (guard ring)


Cosmic ray events recorded in ProtoDUNE-DP

Events with LEM ΔV of 3.1-3.2 kV (October 2019)

Charge Readout Plane gain measurement

- Measurements between September 2019 and January 2020 with cosmics
- \blacktriangleright Operating conditions: 1045 mbar and \sim 90 K
- CRP gain: \(\epsilon\) x G_{LEMs,amplification} \(\propto\) collection(E_{induction})
 \(\epsilon\) estimated to be well above 90%

- September → November: Reduction by at least a factor of 2 due to LEM charging up effects
- November

 January: very small reduction: charging up completed

Gain a factor of 2 lower than extrapolated from previous prototypes

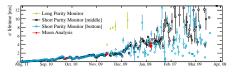
Discrepancy not yet understood, dedicated study to come

Guillaume Eurin CEA-Saclay/IRFU

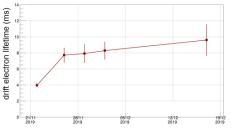
ProtoDUNE Dual Phase

⁽https://arxiv.org/abs/1412.4402)

Conclusions and outlook

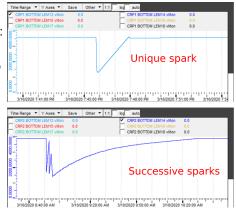

- PDDP: proof of principle achieved for 300 t DLAr TPC over 3 × 3 m² CRP units
- Short on HV extender fixed in June
- CRP gains lower than expected, needs to be understood
- LEMs R&D campaign in progress (2020-2022) for ProtoDUNE-DP Phase II
- Upgrade of CRPs (anode, LEMs, grids fixation, planarity) to tackle HV instability
- Origin of LAr surface instabilities needs to be understood
- Foreseen LEMs/CRPs improvements should allow 10 kt DP module far detector for DUNE feasibility to be demonstrated

Thank you for your attention!



Argon purity in ProtoDUNE-DP

Purity measurements from short purity monitors


Purity measurements from long purity monitor

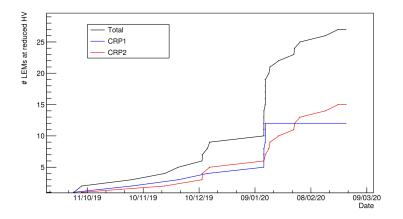
- 3 purity monitors (two short 17-cm long and one long 48cm-long)
- Since November 2019, short purity monitors sensitivity reached
- Long purity monitor more sensitive
- Discrepancies between long and shorts under investigation
- According to long monitor, electron lifetime larger than 7 ms since November and increasing

Slow control and LEM sparking

- Cold box: no automated protection of LEMs
 ⇒ carbonization on several LEMs from continuous discharges
- Two types of LEMs spark events: unique and successive
- In ProtoDUNE-DP, automatic reduction of HV from slow control:
 - \sim 50 V for unique sparks
 - up to 2.5 kV + slow ramping up for successsive sparks (carbonization)
- Recovery time for a unique spark
 2 minutes
- Dead time for successive sparks of up to 2 hours

 \triangleright ~ 8 % of sparking events are successive sparks in standard operation

LEMs sparking rates analysis


- LEMs sparking rates per hour normalised to a full CRP
- Numbers in grey given as an indication (different ΔV or number of LEMs, earlier period)

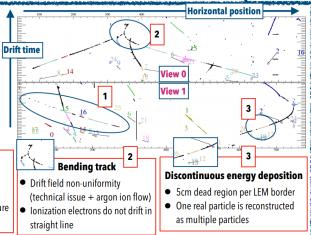
Spark/CRP/h	Extraction	Cathode	R = 0	$R=10~M\Omega$	$R = 500 M\Omega$
		ON	1.4 ± 0.2	2.9 ± 0.3	4.6 ± 0.5
	ON	OFF	1.9 ± 0.2	2.6 ± 0.2	$1.0 \pm 0.2 - 1.6 \pm 0.2$
CRP1		ON - OFF	-0.5 ± 0.3	0.3 ± 0.3	3.0 ± 0.5
		ON		1.2 ± 0.3	1.3 ± 0.3
$\Delta V = 3.1 kV$	OFF	OFF		0.4 ± 0.2	0.3 ± 0.1
		ON - OFF		0.8 \pm 0.3	1.0 ± 0.3
	Extraction	Cathode	R = 0	$R = 10 M\Omega$	$R = 500 M\Omega$
		ON		5.9 ± 0.5	4.7 ± 0.6
	ON	OFF		6.2 ± 0.6	3.9 ± 0.7
CRP2		ON - OFF		-0.3 ± 0.8	0.8 ± 0.9
		ON			5.4 ± 0.5
$\Delta V = 3.4 kV$	OFF	OFF			0.9 ± 0.2
		ON - OFF			4.4 ± 0.6

- Larger ΔV across the LEMs \Rightarrow higher sparking rate
- With extraction: no visible contribution of drift field
- Current limiting resistors value impact sparking rates
- The extraction field seems to increase the sparking rate

LEMs aging during ProtoDUNE-DP operations

• Increasing number of LEMs with nominal ΔV below 2.9 kV

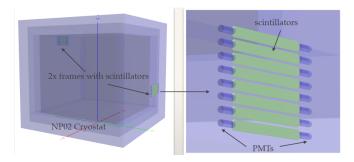
► To this date, 27 LEMs limited to $\Delta V = 2.9$ kV or less


Events reconstruction with Pandora

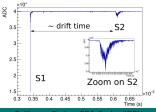
A typical event with cosmic muons (data)

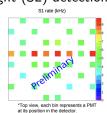
- 1 dot = 1 hit
- Same colored hits = 1 reconstructed track
- Number = Track number
- Circle = Track vertex

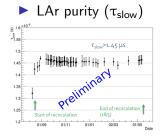
Sparse track


- Low argon purity + electron recombination
- Ionization signal loss (electron capture by impurities/argon ion)

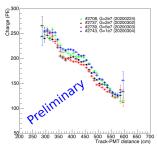
E. Chardonnet, Neutrino 2020

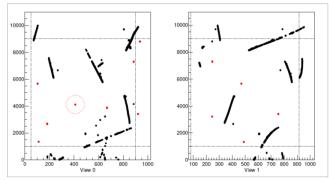

Cosmic Ray Tagger (CRT)


- 2 Cosmic Ray Tagger planes installed in November 2019
- 8 scintillator paddles covering 1 m²
- 32 PMTs read out by custom µTCA system
- ▶ Top: side of CRP2 close to LAr surface
- Bottom: close to the cathode, next to CRP1



Light data analysis


- ProtoDUNE-DP PDS performance:
 - τ_{slow} component as LAr purity indicator
 - Timing accuracy < 16 ns
 - PEN/TPB performance comparison
- Light propagation in LAr in different drift field condition
- Muon detection:
 - Muon (S1) rate
 - CRT muon track study
 - Data-Monte Carlo comparison
- Low energy background
- Electroluminescence light (S2) detection



CRT muon tracks

³⁹Ar analysis with ProtoDUNE-DP

- ▶ ³⁹Ar naturally and homogeneously present in Ar: decay rate per CRP = 1.5×10^4 Bq
- ► Charge deposition constant with time ⇒ calibration of LEM gain and monitoring of space charge effects

- Events selected as isolated hits matched in the two independent views
- \blacktriangleright Charge sharing between views evenly centered around 50 %

Guillaume Eurin CEA-Saclay/IRFU

ProtoDUNE Dual Phase

Technical issues

- Short-circuit between VHV cable and 21st ring of field cage
 - \Rightarrow Inhomogeneous electric field
 - \Rightarrow maximum 150 kV
 - (50 kV standard, 70 & 90 kV recently tested)
 - \Rightarrow Should be fixed soon but challenging
- Surface instabilities:
 - Short pressure increase of 35 mbar performed every few days
 - Eliminates bubbles from top of field cage and HV feedthrough
 - Briefly eliminates waves on liquid surface
- Cryogenics instabilities could correlate with CRPs instabilities
- Cold filters clogging initially requiring cleaning every 10 days
 No more clogging after last intervention in November 2019
- Purity level systematics to understand
- Several electronics channels damaged by grid sparks