
Hadron-argon Cross-section Measurements in ProtoDUNE-SP

Heng-Ye Liao, On behalf of the DUNE Collaboration 40th International Conference on High Energy Physics July 29, 2020

Introduction

- Final state interactions (FSI): Hadrons produced in a neutrino interaction can re-interact with the nuclear medium before leaving the nucleus
- FSI is an important process in neutrino interactions
 - FSI can change charge, multiplicity of outgoing hadrons, and altering their final state kinematics. → Misinterpret primary neutrino interactions

- FSI is a key component in neutrino event generators

Heavily rely on the nuclear models to unfold reconstructed neutrino energy to true neutrino energy

Reco.
$$E_{v} \rightarrow Nuclear Model \rightarrow E_{v}$$
 shape (truth) $\rightarrow Oscillation Parameters$

- Limited measurement in argon, FSI has yet to be understood

ProtoDUNE-SP at CERN Neutrino Plateform

- Main physics goal of ProtoDUNE single phase (ProtoDUNE-SP): Measure hadron-argon cross sections
 - Results provide critical information to FSI in neutrino-argon interactions
 - Improved FSI model can reduce systematic uncertainties on neutrino energy reconstruction & neutrino signal selection \rightarrow Crucial to achieve DUNE physics goals
- ProtoDUNE-SP milestone https://arxiv.org/abs/2007.06722

rXiv.org > physics > arXiv:2007.06722	Startin
	Help Advanced
Physics > Instrumentation and Detectors	

[Submitted on 13 Jul 2020 (v1), last revised 16 Jul 2020 (this version, v2)]

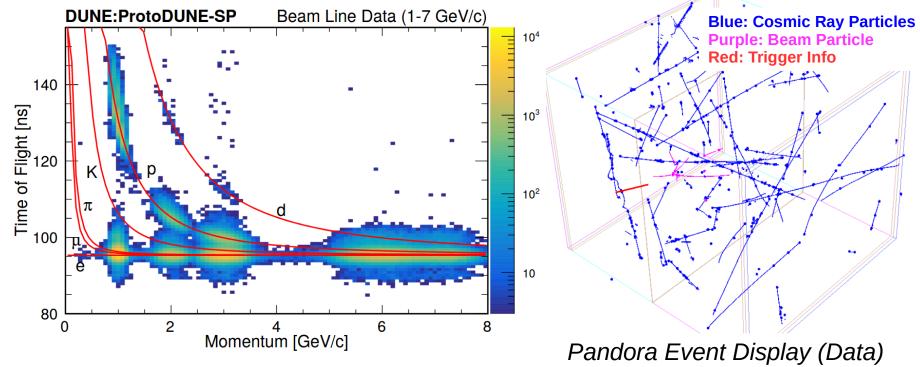
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

DUNE Collaboration: B. Abi, A. Abed Abud, R. Acciarri, M. A. Acero, G. Adamov, M. Adamowski, D. Adams, P. Adrien, M. Adinolfi, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, C. Alt, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, M. A. Arroyave, J. Asaadi, A. Aurisano, V. Aushev, D. Autiero, F. Azfar, H. Back, J. J. Back, C. Backhouse, P. Baesso, L. Bagby, R. Bajou, S. Balasubramanian, P. Baldi, B. Bambah, F. Barao, G. Barenboim, G. J. Barker, W. Barkhouse, C. Barnes, G. Barr, J. Barranco Monarca, N. Barros, J. L. Barrow, A. Bashyal, V. Basque, F. Bay, J. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, D. Belver, N. Benekos, F. Bento Neves, J. Berger, S. Berkman, P. Bernardini, R. M. Berner, H. Berns, S. Bertolucci, M. Betancourt, Y. Bezawada, M. Bhattacharjee, B. Bhuyan, S. Biagi, J. Bian, M. Biassoni, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, B. Blanco Siffert, F. D. M. Blaszczyk, G. C. Blazey, E. Blucher, J. Boissevain, S. Bolognesi, T. Bolton, M. Bonesini, M. Bongrand, F. Bonini, A. Booth, C. Booth, S. Bordoni, A. Borkum, T. Boschi, N. Bostan, P. Bour, S. B. Boyd et al. (891 additional authors not shown)

arXiv

ProtoDUNE-SP: Experimental Setup LArTPC (main detector) Controlled environment **Excellent tracking & calorimetric** CERN H4 beamline with known particle type (hadrons and electrons) & incident capabilities energies DSS Feedthrough Feedthroughs Runway Beam 3ridge Bear **ProtoDUNE-DP** ProtoDUNE-SP **ProtoDUNE-SP Detector** beam line Endwall Field Cage Tunable particle beam: • $0.5 - 7 \text{ GeV/c } p/\pi^+/K^+/\mu^+/e^$ m x 2

- One of the 2 prototypes for DUNE at CERN Neutrino Platform
- 7.2 x 6.0 x 6.9 m liquid largon time projection chamber (LArTPC) / ~740 tons of liquid argon


beam

Rich Data to Study Hadron-Argon Interactions

- A variety of test-beam particles in broad range of momenta 0.5-7 GeV/c (π⁺/p/K⁺/μ⁺/e⁻)
- Over 4 million beam events (all momenta) collected Data taking: from 09/21/2019 to 11/12/2019 [~6 weeks beam run]
- Successful data collection as designed

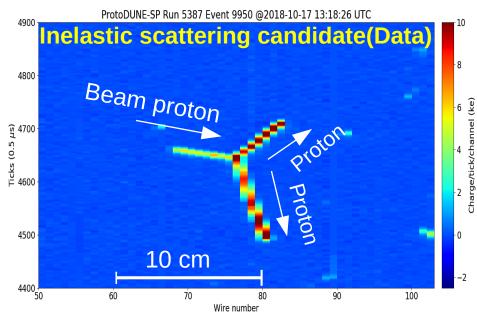
	Data	Monte Carlo Simulation					
Momentum	Total Triggers	Total Triggers	Expected Pi Trigger	Expected Proton Trigger	Expected Electron Trigger	Expected Kaon Trigger	
0.3 GeV/c	269K	242K	0	0	242K	0	
0.5 GeV/c	340K	299K	1.5K	1.5K	296K	0	
1 GeV/c	1089K	1064K	382K	420K	262K	0	
2 GeV/c	728K	639K	333K	128K	173K	5K	
3 GeV/c	568K	519K	284K	107K	113K	15K	
6 GeV/c	702K	689K	394K	70K	197K	28K	
7 GeV/c	477K	472K	299K	51K	98K	24K	
All momenta	4173K	3924K	1694K	779K	1384K	73K	

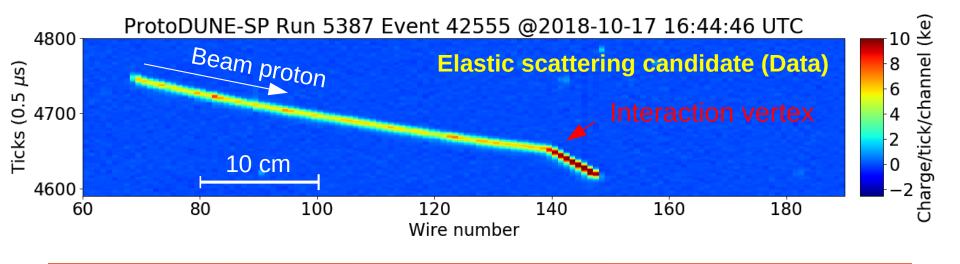
Particle Identification & Event Reconstruction

- Particle identification:
 Juse the info from TOF & Cherenkov counters
- Event reconstruction:
 - \rightarrow Use Pandora* multiple algorithms to reconstruct tracks/showers

*Pandora reconstruction algorithms: https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6

Proton Cross Section Channels

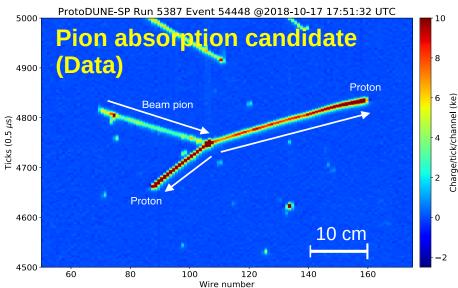

Inclusive

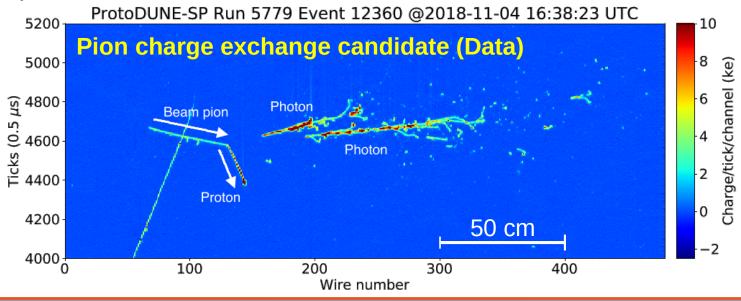

- Elastic

Nucleus is left in ground state

- Inelastic

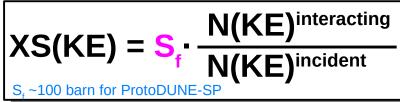
Nucleus is left in an excited state and/or one or more nucleons are knocked out

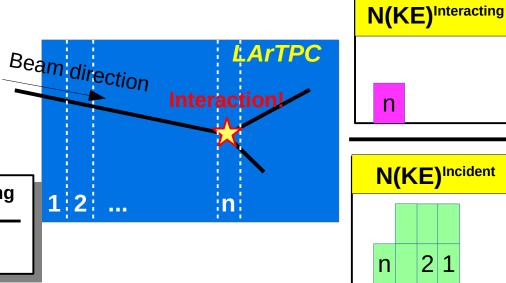

Pion Cross Section Channels

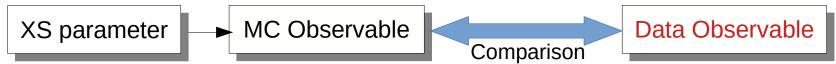

Inclusive

Elastic & Inelastic scattering

- Exclusive
 - Charge Exchange (CEx) Final state pion charge differs by one unit from the initial pion charge e.g. $\pi^+ \rightarrow \pi^0$
 - Absorption (Abs)

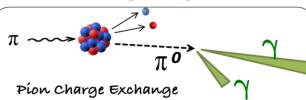

No pion in the final state.

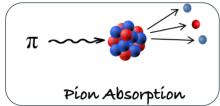



Cross Section Measurements: Methods

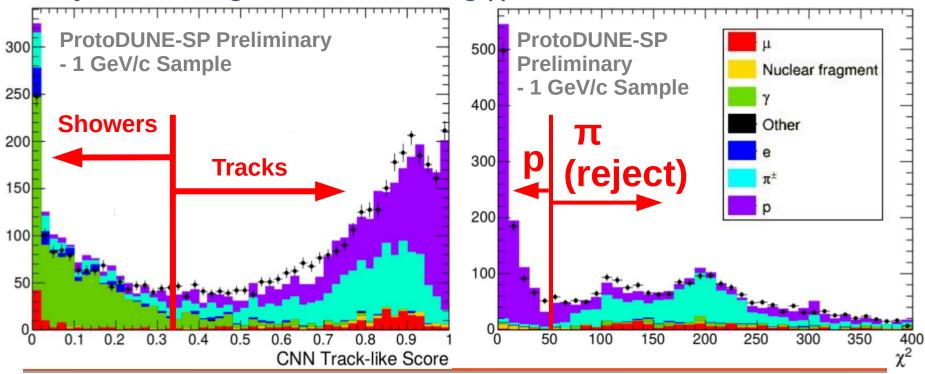
- Established a framework of cross section (XS) calculations
 - Thin slice method
 - Developed by LArIAT experiment
 - Treat wire-to-wire spacing as a series of "thin-slab" targets
 - Each thin-slab is an independent measurement
 - XS formula:

- Reweighting method
 - Event-by-event weighted observables by changing XS parameters

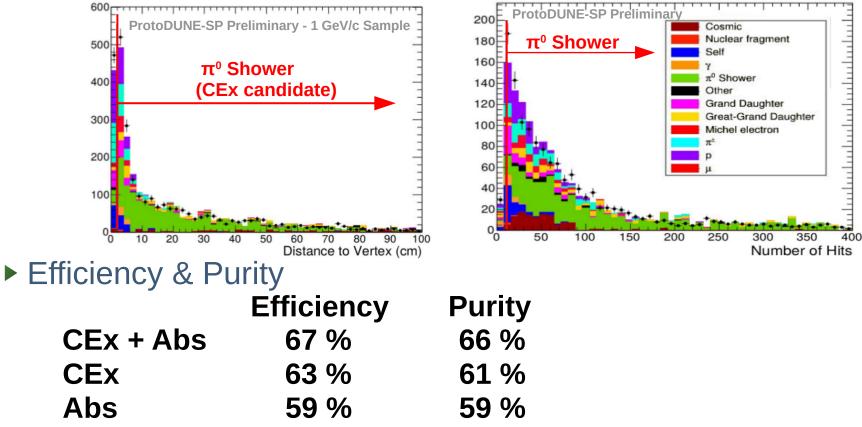



- Geant4Reweight software package (link)
- Use for XS systematics estimation & model-dependent XS calculation

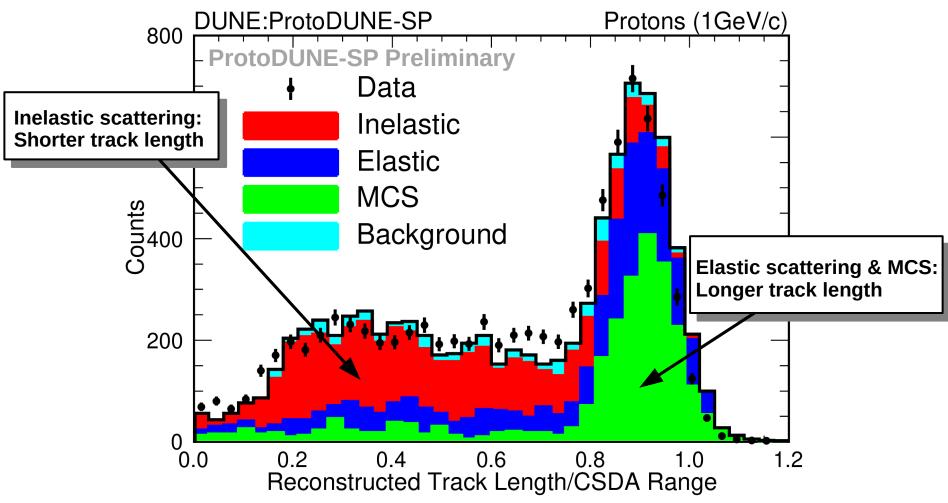
21


Pion Event Selection

- Signature of CEx+Abs: No charged pions in final state
- Event Selection:

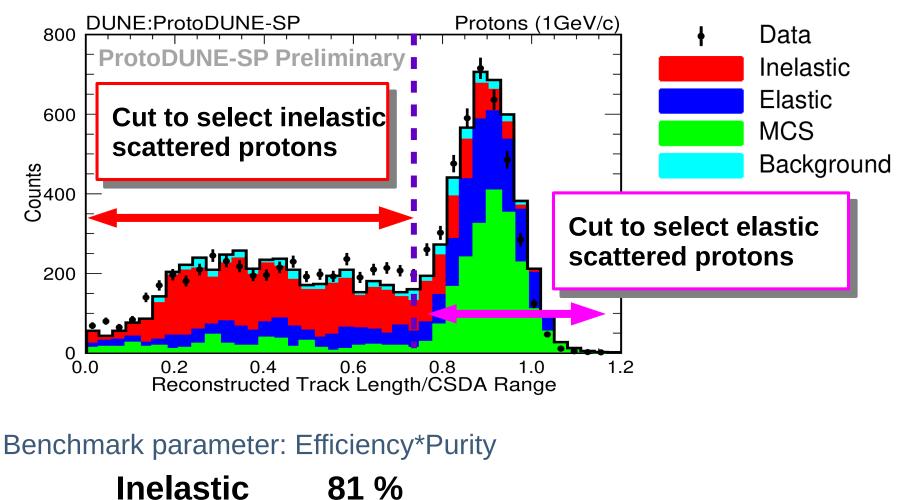


- Daughter track/shower tagging using CNN
- Reject $\pi^{\scriptscriptstyle\pm}$ daughter tracks using $\chi^2\mbox{-}based$ PID

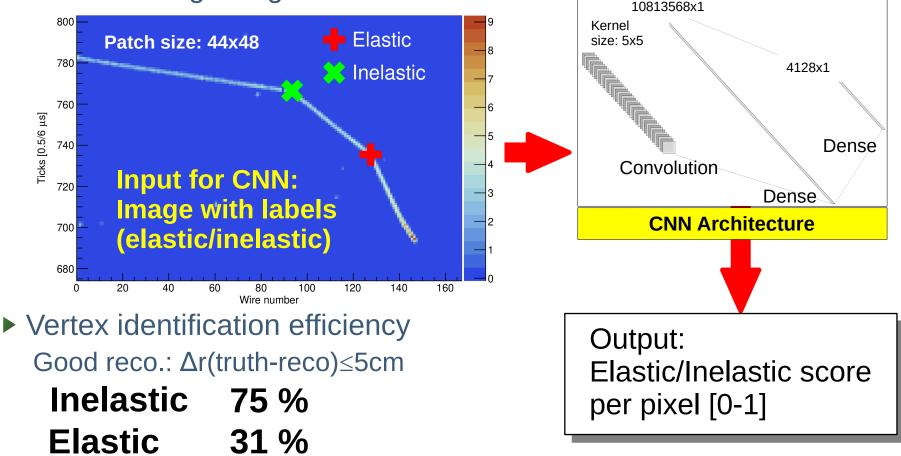

Pion Event Selection: Performance

- CEx & Abs separation: Look for π⁰-like showers
 CEx: Showers from π⁰ / Abs: No showers
 - \rightarrow Use (1)distance to vertex cut & (2)hit distribution cut

Optimization of event selection in progress


Proton: Elastic/Inelastic Event Selection

- **Data & MC in good agreement (** χ^2 **/ndf: 93.4/40**)
- Good simulation that we can see elastic & inelastic components clearly



Proton: Event Selection Performance

Proton: Interaction Vertex Identification

- Vertex identification: Key to the success of XS measurement
- Vertex finding using CNN:

Improvement on vertex-finding efficiency expected using sophisticated network structure

Summary & Outlook

- FSI is crucial to neutrino interactions
- ProtoDUNE-SP measures hadron-argon cross sections
 - Provide valuable inputs for better understanding of FSI
 - Important results to achieve DUNE physics goals and beneficial to neutrino community
- ProtoDUNE-SP first result on detector performance has published
- Rapid progress in both the pion-Ar and proton-Ar cross section analyses
- ProtoDUNE-SP will deliver many more physics results. Stay tuned!

Stefania Bordoni

Construction, installation and operation of ProtoDUNE-SP https://indico.cern.ch/event/868940/contributions/3813675/

Michael Mooney Measurement of space charge effects in ProtoDUNE-SP https://indico.cern.ch/event/868940/contributions/3813672/

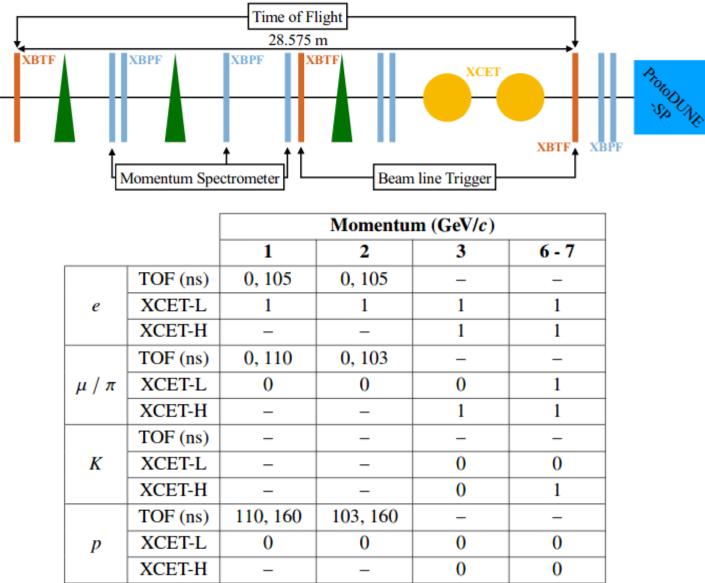
Dante Totani

Performance of photon detectors in ProtoDUNE-SP https://indico.cern.ch/event/868940/contributions/3813674/

Richie Diurba Purity monitoring for ProtoDUNE https://indico.cern.ch/event/868940/contributions/3817045/

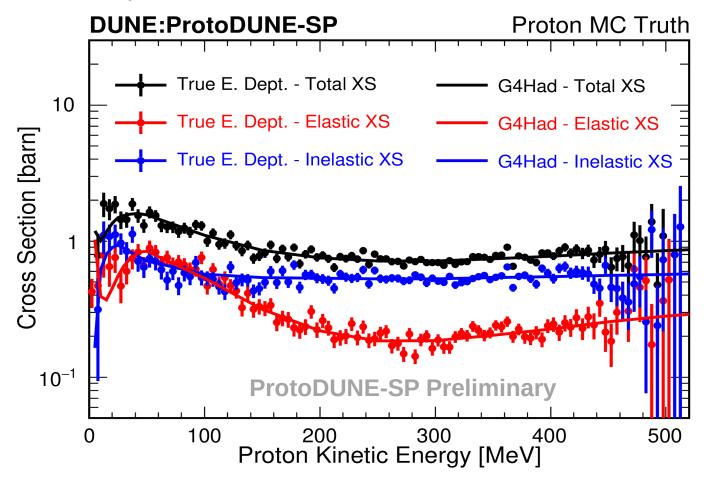
Guillaume Eurin

ProtoDUNE Dual Phase: Design, Construction and First Results https://indico.cern.ch/event/868940/contributions/3813836/


Backup

ProtoDUNE-SP: Beamline Instrumentation

- CERN H4 beamline-extension & Beamline Instrumentation
 - Known particle type (hadrons and electrons) & incident energies



TOF & Cherenkov Info

Thin Slice Method: Proof-of-Principle

 Verification of the thin slice method using stand-along Geant4 application (G4HadStudies*)

* Hans Wenzel's package: https://github.com/hanswenzel/G4HadStudies