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Abstract: Machine learning algorithms are becoming increasingly prevalent and powerful

in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated

algorithms can be computationally expensive. At the same time, the data volumes of such

experiments are also increasing and billions of neutrino events each including many machine

learning inferences creates data processing computing challenges. We explore a computing

model where heterogeneous computing GPU co-processors are made available as a web service,

where they can be efficiently deployed and be elastically right-sized for a given processing

task, which we call SONIC – Services Optimized for Network Inference with Coprocessors.

We integrate GPU acceleration specifically for the ProtoDUNE reconstruction chain without

disrupting the native compute workflow. We accelerate the most time-consuming task, track

identification, by a factor of 30 which results in a 3× speed improvement of the total processing

chain of CPUs and GPUs. For this given task, we only require deploying 1 GPU for every

∼30 CPU threads.
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1 Introduction

Fundamental particle physics has pushed the bounds of computing for decades. As detectors

become more sophisticated and granular, particle beams become more intense, and the data

sets grow, the processing needs of the biggest fundamental physics experiments in the world

are presented with massive computing challenges.

The Deep Underground Neutrino Experiment (DUNE), the future flagship neutrino ex-

periment based at Fermi National Accelerator Laboratory, will conduct a rich program in

neutrino and underground physics, including determination of the neutrino mass hierarchy

and measurements of CP violation in neutrino mixing using a long baseline accelerator-based

neutrino beam, detection and measurements of atmospheric and solar neutrinos, searches for

supernova-burst neutrinos and other neutrino bursts from astronomical sources, and searches

for GUT-scale physics in proton decay.

The detectors will consist of 4 modules, of which at least three are planned to be 10 kton

Liquid Argon Time Projection Chambers (LArTPCs). Charged particles produced from neu-

trino or other particle interactions will travel through and ionize the argon, with ionization
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electrons drifted over many meters in a high electric field, and detected on planes of sensing

wires or printed-circuit-board charge collectors. What results is essentially a high-definition

image of a neutrino interaction, which naturally lends itself to applications of machine learn-

ing techniques designed for image classification, object detection, and semantic segmenta-

tion. Machine learning can also aid in other important applications, like noise reduction and

anomaly/region-of-interest detection.

Due to the size and long readout times of the detectors, the data volume produced by

the detectors will be very large: uncompressed continuous readout of a single module will

be nearly 1.5 PB per second. Because that amount of data is impossible to collect and

store (not to mention process), and because most of that data will not contain interactions

of interest, a real-time data selection scheme must be employed to identify and store data

containing neutrino interactions. With a limit on total bandwidth of 30 PB of data per year

for all DUNE modules, that data selection scheme (and any accompanying compression) must

effectively reduce the data rate by a factor of around 106.

In addition to applications in real-time data selection, accelerated machine learning in-

ference that can scale to processing of large data volumes will be important for offline recon-

struction and selection of neutrino interactions. A total data volume of 30 PB of raw data is

anticipated to be collected per year, with individual event sizes of the order of a few GB, and

extended readout events (associated, for example, with supernova burst events) that may be

around 100 TB per module. It will be a challenge to efficiently analyze that dataset without

transformations in computing models and technology that can handle data retrieval, trans-

port, parallel processing, and storage in a cohesive manner. Similar computing challenges

exist for a wide-range of existing neutrino experiments such as µBooNE [] and NOνA [].

In this paper, we focus on the inference of deep ML models as a solution for process-

ing large datasets with the ProtoDUNE reconstruction workflow. For ProtoDUNE, machine

learning (ML) inference is the most computationally intensive module in the full event pro-

cessing chain and is run repeatedly on hundreds of billions of events. A growing trend to

improve computing power has been the development of hardware that is dedicated to accel-

erating certain kinds of computations. Pairing a specialized coprocessor with a traditional

CPU, referred to as heterogeneous computing, greatly improves performance. These special-

ized coprocessors utilize natural parallelization and provide higher data throughput. In this

study, the coprocessors employed are GPUs (Graphical Processing Units) though the approach

lends itself to even accommodating multiple types of coprocessors in the same workflow. ML

algorithms, and in particular deep neural networks, are at the forefront of this computing

revolution due to their high parallelizability and common computational needs.

To optimally integrate the GPUs into the neutrino event processing workflow, we deploy

them as a service: in a client-server model where the primary job with the clients is spawned

on CPUs, as is typically done in particle physics, and the ML model inference is performed on

a GPU server. This approach, which is called SONIC [], is in contrast to a more traditional

direct connection of a GPU to each and every single CPU node. The SONIC (Services Opti-

mized for Network Inference with Coprocessors) approach allows a more flexible computing
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architecture for accelerating particle physics computing workflows which can be right-sized

to a given task.

The rest of this paper is organized as follows. We first discuss related works which

motivated and informed this study. In Section 2, we describe the tasks for ProtoDUNE event

processing and the reconstruction task for which an ML algorithm has been developed. We

detail how the GPU coprocessors are integrated into the neutrino software framework as a

service on the client side and how we set up and scale out GPU resources in the cloud. In

Section 3, we present the results which include single job and batch job multi-CPU/GPU

latency and throughput measurements. Finally, in Section 4, we summarize the study and

discuss further applications and studies to perform.

Related Work

Inference as a service was first employed for particle physics in Ref. [? ]. This initial study

utilized custom Field Programmable Gate Arrays (FPGAs) manufactured by Intel Altera and

provided through the Microsoft Brainwave platform [? ]. These FPGAs achieved low-latency,

high-throughput inference for large convolutional neural networks such as ResNet-50 [? ]

using single-image batches.

Modern deep machine learning algorithms have been embraced by the neutrino recon-

struction community because popular computer vision and image processing techniques map

well to the neutrino reconstruction task and the detectors which collect the data. Please

describe any previous and citable work on ML models in neutrino reconstruction.

2 Setup and methodology

In this study, we focus on one specific computing workflow, the ProtoDUNE reconstruction

chain, to demonstrate the approach and power and flexibility of the SONIC approach. Pro-

toDUNE is a prototype detector for the DUNE (Deep Underground Neutrino Experiment)

far detector. It is currently the largest LArTPC ever constructed and is vital for building

the technology required for DUNE. This includes the reconstruction algorithms required for

extracting physics objects for the LArTPC detector technology as well as the computing

workflows needed.

In this section we will describe the ProtoDUNE reconstruction workflow and the ML

model which is the current computing bottleneck. We will then describe the SONIC approach

and how it was integrated into the LArTPC reconstruction software framework. Then we will

describe how this approach can be scaled for even larger heterogeneous computing coprocessor

workflows.

2.1 ProtoDUNE reconstruction

The workload used in this paper is the full offline reconstruction chain for the ProtoDUNE de-

tector, which is a good representative of event reconstruction in present and future accelerator-

based neutrino experiments. It begins by reconstructing optical hits from pulses produced
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by the photon detectors from scintillation light caused by the passage of ionizing particles

through the liquid argon. These hits are grouped into flashes from which various param-

eters are determined, including time, spatial characteristics, and number of photoelectrons

detected.

After the optical reconstruction stage, the workflow proceeds to the reconstruction of

LArTPC wire hits. It begins by applying a deconvolution procedure that attempts to recover

the original waveforms by disentangling the effects of electronics and field responses after

noise mitigation. The deconvolved waveforms are then used to find and reconstruct wire

hits, providing information like time and collected charge. Once the wire hits have been

reconstructed, the 2D information provided by the hits in each plane are combined with that

from the other planes in order to reconstruct 3D space points. This information is primarily

used to resolve ambiguities caused by the complication of having the induction wires in one

plane wrapping around into another plane.

The disambiguated collection of reconstructed 2D hits are then fed into the next stage

consisting of a modular set of algorithms provided by the Pandora software development kit.

This stage finds the high-level objects associated with particles, like tracks, showers, and

vertices, and assembles them into a hierarchy of parent-daughter nodes that ultimately point

back to the candidate neutrino interaction.

The final module in the chain, EmTrackMichelId, is a machine learning based algorithm

that classifies reconstructed wire hits as being track-like, shower-like, or Michel electron-like.

This algorithm begins by constructing 48×48 pixel images whose two dimensions are the time

t and the wire number w in the plane. These images, referred to as patches, are centered on the

peak time and wire number of the reconstructed hit being classified. The value of each pixel

corresponds to the measured charge deposition in the deconvolved waveforms corresponding

to the wire number and time interval associated with the row and column, respectively, of the

pixel. Inference is performed on these patches using a convolutional neural network which

will be described in more detail in the next section.

2.2 Benchmark models (Mike, Tingjun)

The network model employed by the EmTrackMichelId module of the ProtoDUNE reconstruc-

tion chain consists of a 2D convolutional layer followed by the two fully connected layers. The

convolutional layer takes each of the 48 × 48 pixel patches described in Section 2.1, and ap-

plies 48 separate 5 × 5 filters to it, using stride lengths of 1, to produce 48 corresponding

44 × 44 pixel feature maps. These feature maps are then fed into the first fully connected

(FC) layer consisting of 128 neurons, which is, in turn, connected to the second FC layer

consisting of 32 neurons. Rectified Linear Unit (ReLU) activation functions are applied after

the convolutional layer and each of the two FC layers. Dropouts are implemented between

the convolutional layer and the first FC layer and between the two FC layers to help prevent

overfitting. The second FC layer splits into two separate branches. The first terminates into

three outputs that are constrained to a sum of one by a softmax activation function and

the second terminates into a single output with a sigmoid activation function that limits its
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Figure 1. Architecture of the neural network used by the EmTrackMichelId module in the Proto-

DUNE reconstruction chain.

value within a range of 0 to 1. The total number of trainable parameters in this model is

11,900,420.

2.3 Nvidia Triton inference server with LArSoft (Kevin, Mike, Kyle)

The Nvidia Triton inference server [? ] provides a C++ client interface to send remote

procedure calls (RPCs) to a server that provides one or more GPUs. These calls are based on

gRPC [? ]. The existence of a C++ client interface is key for integrating the service in the

experiment software, which are also based on C++. In particular, the LArSoft [? ] software

is targeted as a common framework shared by many neutrino experiments. A new package,

larrecodnn [? ], hosts the tool that extracts the input from the neutrino event data format,

transmits it in the proper format to be processed by the GPU server, and then receives the

output.

This tool follows the SONIC (services for optimized network inference on coprocessors) [?

] approach that is also in development for other particle physics applications. In this case, a

synchronous, blocking call is used. The CPU usage of the workload, described in Section 2.1,

is dominated by the neural network inference. Therefore, a significant increase in throughput

can still be achieved by accepting the latency of the remote call while the CPU waits for the

result. An asynchronous, non-blocking call would be slightly more efficient, as it would allow

the CPU to continue with other work while the remote call was ongoing. However, this would

require significant development in applications of task-based multithreading, as described in

Ref. [? ].
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This approach has several advantages. Rather than requiring one coprocessor per CPU

with a direct connection over PCIe, many worker nodes can send requests to a single GPU, as

depicted in Fig. 3. This allows heterogeneous resources to be allocated and re-allocated based

on demand, providing significant flexibility as well as cost reduction. The Triton software

also handles load balancing for servers that provide multiple GPUs, further increasing the

flexibility of the server. In addition, the Triton server can host multiple models from various

machine learning frameworks. This reduces maintenance in the experimental code base, which

would otherwise be required to integrate and support separate C++ APIs for every machine

learning framework in use.

Figure 2. Client-server model

Can we get a description of what was needed to get this working in LArSoft?

2.4 Kubernetes scale out (Maria)

We performed tests on many different combinations of computing hardware, which provided us

with a deeper understanding of networking limitations within Google Cloud and on-premises

data centers. Even though the Triton Inference Server does not consume significant CPU

power, the number of CPU cores provisioned for the node did have an impact on the maximum

ingress bandwidth reached in our early tests.

To scale the GPU throughput in flexibly, we deployed a Google Kubernetes Engine cluster

for server side workloads. The cluster was configured using a Deployment and ReplicaSet,

which controlled Pods and their resource requests. Additionally, a load balancing service

was deployed which distributed incoming network traffic among the Pods. We implemented

Prometheus-based monitoring which provided insight on three aspects: system metrics for

the underlying virtual machine, Kubernetes metrics on the overall health and state of the

cluster, and inference-specific metrics gathered from the Triton Inference Server via a built-in

Prometheus publisher. All metrics were visualized through a Grafana instance, also deployed

within the same cluster.
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Figure 3. Base GKE setup

We kept the Pod to Node ratio at 1:1 throughout the studies, with each Pod running

an instance of Triton Inference Server (v20.02-py3) from Nvidia Docker repository. Pod

hardware requests aim to maximize the use of allocatable vCPU and memory, and use all

GPUs available to the container.

In this scenario, it can be naively assumed that a small instance n1-standard-2 with 2

vCPUs, 7.5 GB of memory, and different GPU configurations [1, 2, 4, 8] would be able to

handle the workload, which would be distributed evenly on GPUs. After performing several

tests, we found that horizontal scaling would allow us to increase our ingress bandwidth

since Google Cloud imposes a hard limit on network bandwidth at 2 Gbit/s per virtual CPU

(vCPU) up to a theoretical maximum of 16 Gbit/s for each virtual machine [? ].

Given these parameters, we found that the ideal setup for optimizing ingress bandwidth

was to provision multiple Pods on 16-vCPU machines with fewer GPUs per Pod. For GPU-

intensive tests, we took advantage of having a single point of entry through Kubernetes load

balancing and provisioning multiple identical Pods behind the scenes, where the sum of the

GPUs attached to each Pod is the total GPU requirement.

3 Results

Given the setup we describe in the previous section for machine learning acceleration as a

service, we measure the performance and compare against the default CPU-only workflow in

ProtoDUNE.

First, we measure the performance of the GPU server using standardized tools provided

by NVidia to baseline the expected throughput of the GPU server for our model. Then

we measure the latency for a single client side job within the LArSoft software framework
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including GPU acceleration as a service and in the baseline CPU-only workflow. Finally, we

scale out the workflow to have multiple CPU clients using the GPU server and develop a

model for scaling out to large workloads.

3.1 Server side performance

• describe perf client

• make table of measured throughputs

• describe basic features

Figure 4. Processing comparison

3.2 Single client measurements (Mike)

Tests of network latency and inference latency.

Figure 5. Processing comparison
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3.3 Multiclient scaling (Mike)

3.3.1 Simplified model of throughput

We assume blocking modules and zero communication latency to start with. We define p as

the fraction of the event which can be accelerated such that the total time of a CPU-only job

is trivially defined as:

ttotCPU = (1 − p) × ttotCPU + p× ttotCPU (3.1)

We replace the ”accelerate-able” module by the latency on the GPU:

ttotSONIC,ideal = (1 − p) × ttotCPU + tGPU (3.2)

This is in the ideal scenario when the GPU is always available for the CPU job. The value

of tGPU is fixed unless the GPU is saturated with requests. We define this condition as how

many GPU requests can be made while a single CPU is processing an event. So the GPU

saturation level conditions is defined as:

NCPU

NGPU
>
ttotSONIC,ideal

tGPU
(3.3)

Here, ttotSONIC,ideal is equivalent to Eq. A.2 and is the processing time assuming there is no

saturated GPU. If we consider now two conditions, saturated and unsaturated GPU, we can

compute the total latency in each case:

ttotSONIC = (1 − p) × ttotCPU + tGPU, if
NCPU

NGPU
<
ttotSONIC,ideal

tGPU
(3.4)

ttotSONIC = (1 − p) × ttotCPU + tGPU

[
1 +

(
NCPU

NGPU
−
ttotSONIC,ideal

tGPU

)]
, if

NCPU

NGPU
>
ttotSONIC,ideal

tGPU
(3.5)

Plugging in Eq. A.2, you can rewrite the above as:

ttotSONIC = (1 − p) × ttotCPU + tGPU, if
NCPU

NGPU
<
ttotSONIC,ideal

tGPU
(3.6)

ttotSONIC = tGPU × NCPU

NGPU
, if

NCPU

NGPU
>
ttotSONIC,ideal

tGPU
(3.7)

3.4 Validation

So, now let’s plug in some numbers for the protoDUNE scenario. The total CPU time with

no GPU is ttotCPU = 330 s. The accelerate-able model is EMMichelTrackID such that p = 0.67

and p × ttotCPU = 220 s. When we run the module on the GPU, we find that tGPU = 10 s.

Plugging these values into Eq. A.2

ttotSONIC,ideal = 120s (3.8)
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If we consider both conditions, we find:

ttotSONIC = 120s, if
NCPU

NGPU
< 12 (3.9)

ttotSONIC = 110 s + 10 s

[
1 +

(
NCPU

NGPU
− 12

)]
, if

NCPU

NGPU
> 12 (3.10)

For example, if NCPU = 32 and NGPU = 1, then ttotSONIC = 320s, but that’s not what we see.

Even in the single GPU scenario, this already does not seem to scale. Why??

4 Summary and Outlook (Nhan)

On HPC?

Acknowledgments
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A Throughput and Latency Calculations

We assume blocking modules and zero communication latency to start with. We define p as

the fraction of the event which can be accelerated such that the total time of a CPU-only job

is trivially defined as:

tCPU = (1 − p) × tCPU + p× tCPU (A.1)

We replace the “accelerate-able” module by the latency on the GPU:

tideal = (1 − p) × tCPU + tGPU (A.2)

This is in the ideal scenario when the GPU is always available for the CPU job. The value

of tGPU is fixed unless the GPU is saturated with requests. We define this condition as how

many GPU requests can be made while a single CPU is processing an event. So the GPU

saturation level conditions is defined as:

NCPU

NGPU
>
tideal
tGPU

(A.3)

Here, tideal is equivalent to Eq. (A.2) and is the processing time assuming there is no satu-

rated GPU. There are two conditions, unsaturated and saturated GPU, which correspond to
NCPU
NGPU

< tideal
tGPU

and NCPU
NGPU

> tideal
tGPU

, respectively. We can compute the total latency to account

for both cases:

tSONIC = (1 − p) × tCPU + tGPU

[
1 + max

(
0,
NCPU

NGPU
− tideal
tGPU

)]
(A.4)

A small diagram illustrating the additional latency from a saturated GPU in Eq. (A.8)

is given in Fig. 6. For the case of NCPU = 5 and NGPU = 2, we show that the latency for

CPU1 is either 2 or 3 clocks. This can, for example, explain where there is such a spread in

the total time for a given job to finish.

Plugging in Eq. (A.2) for tideal, the saturated case simplifies to:

tSONIC = tGPU × NCPU

NGPU
(A.5)

A.1 Validation

So, now let’s plug in some numbers for the protoDUNE scenario. The total CPU time with

no GPU is tCPU = 330 s. The accelerate-able model is EMMichelTrackID such that p = 0.67

and p × tCPU = 220 s. When we run the module on the GPU, we find that tGPU = 10 s.

Plugging these values into Eq. (A.2)

tideal = 120s (A.6)

If we consider both conditions, we find:

tSONIC = 120s, if
NCPU

NGPU
< 12 (A.7)

tSONIC = 110 s + 10 s

[
1 +

(
NCPU

NGPU
− 12

)]
, if

NCPU

NGPU
> 12 (A.8)
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Figure 6. Concurrency mapping for p = 0.5 and (1 − p) × tCPU = 1 and tGPU = 1

For example, if NCPU = 32 and NGPU = 1, then tSONIC = 320s, but that’s not what we see.

Even in the single GPU scenario, this already does not seem to scale. Why??

Figure 7. Results from tests by Mike/Maria
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