

Upstream DAQ Technology Review

J. Brooke, R. Sipos

High-Level Upstream DAQ Design

Goals

1. Review progress on implementation of Upstream DAQ components:

- Trigger primitive generation
- Latency (10s) buffer
- SNB (100s) buffer
- Data request handling •
- A great deal of impressive work has been done !
- 2. Identify/revise baseline design for each component
 - Starting with technical review in this workshop
 - concluding

Followed by discussion with stakeholders & DUNE DAQ coordination team before

Readout Infrastructure (per FD module)

- 1 barrack underground (max 125 kW, 16 racks) •
- Approx 80 servers (at least 2U) to readout 150 APAs + PDS
- Each server will readout 2 APAs using 1 or 2 FELIX PCIe cards TDR includes additional co-processors hosted on PCIe cards Now anticipate all processing to be on the PCI card itself
- Triggered data sent to storage & high-level filter on the surface

Readout System Variants

Combination	HitFinding	10s buffer	SNB store
Α	Host	Host	Host
B	FPGA	Host	Host
С	FPGA	FPGA	FPGA

Viable combinations of FW/SW implementation of the functional elements (In order to maintain un-directional data flow between PCI board and host)

Readout Modes

1. Standard trigger requests

- Time window variable on event-by-event basis: few us to few s
- Not time-ordered

2. Debug/calibration streams

- Stream full bandwidth from single link to output based on headers
- Configurable streaming

3. Supernova burst

- Stream all inputs to local storage following SNB trigger
 - TDR foresees latency of 10s, time window of 100s

Readout Failure Scenarios

1. Low-level FE failure

Single link failure

2. Link alignment errors

Missing data blocks/non-consecutive timestamps

3. Uncompressable data

Data from an FEB cannot be compressed

• This list is incomplete; should be treated as a starting point for understanding resilience

Criteria

- Broad categories •
 - Features
 - Adaptability
 - Reliability
 - Long term support
 - Resource requirements
- Detailed questions on the review document •
 - ٠ _Readout_Technology_evaluation.pdf

https://indico.fnal.gov/event/44240/attachments/131513/161079/DUNE_Upstream_DAQ_-

Physics Performance

- Physics performance not included in criteria
- A single trigger primitive algorithm has been implemented in both FW and SW Physics performance expected to be *identical*

 - Modulo bugs etc.
- Amount of 'spare' resources may have an impact in future • If these resources can be successfully deployed in a way that increases
 - physics impact

Cost

- Cost not included in criteria

 - However, information to consistently cost the options is not currently available
- and *specifications*
- This should (we hope) allow a full costing after the review workshop
 - UK, CERN, Canada

Clearly, the design must be implemented with available funding

One goal of the review is to understand requirements in terms of *resources*

Will organise this with representatives from funding institutes/countries, ie.

Workshop Agenda

WEDNESI 8:00 AM → 8:15 AM Introduction Speakers: Jim Brooke, Roland Sipos (CERN) 四 TechReviewIntro-29... 8:15 AM **Trigger Primitive Generation - Firmware** → 9:00 AM Speakers: Dr Konstantinos Manolopoulos (Rutherford Appl UPDAQ_TechRev_T... 9:15 AM → 10:00 AM **Trigger Primitive Generation - Software** Speaker: Philip Rodrigues (University of Oxford) B upstream-daq-tech-... 10:15 AM → 10:30 AM 10:30 AM → 11:30 AM Discussion

day, 29 J uly	
	©15m 🖉 ▾
leton Laboratory) , Konstantinos Manolopoulos (Rutherford Appleton Laboratory)	3 45m 🖌 🕶
	𝕄 45m 🖌 -
Coffee break	③ 15m
	🕲 1h 🛛 🖌 🕶

Workshop Agenda

Workshop Agenda

THURSDAY, 30 JULY → 8:45 AM 10s/100s Buffer - Software Q 45m Agenda includes time for questions after the talks Time for discussion scheduled at the end of each session 9:0 If more time is needed - please help identify topics • We can schedule time in forthcoming UD meetings 10: We will record the sessions on Zoom and upload to agenda afterwards 10: 11:15 AM → 11:30 AM Closeout

....