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Executive summary

I CPU-based hit finding is a relatively straightforward and flexible approach
I Hit finding builds on in-host buffering from FELIX, triggering from artdaq, and data selection

with ptmp. The ProtoDUNE demonstrator is fully integrated with the rest of the DAQ
I The CPU hit-finding has been successfully used for the self-trigger demonstration, for purity

monitoring, and for rapid neutron-source analysis
I Resource usage: 1 APA/server comfortably demonstrated (30 cores). Progress towards 2

APAs/server (with 2019 components)
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ProtoDUNE demonstrator structure

Raw q

dispatcher

processing

trigger match

Get FELIX block,
push to raw q

raw q

Observe raw q find coll hits
push hits to
hit q, ptmp

Raw qhit q

recv trig req Pop raw q, hit q
pass 
fragments 
to artdaq

induction
processing

pop ind q Find ind hits
push hits to
hit q, ptmp

Unpack WIB format,
Push induction q

Raw qinduction q

“producer-observer-consumer queue”

One of these per link. 10 links/APA

I Default FELIX buffering/triggering (see Adam’s talk):
1. Full data stream into host memory via PCIe
2. Parse FELIX blocks (∼packets), separate links
3. Copy data from each link to its own buffer

I Additional steps for hit-finding:
1. Decode WIB format and expand 12-bit ADCs to 16-bit
2. Push expanded collection/induction data onto separate queues
3. Processing threads pop expanded data and find hits
4. Hits buffered for readout
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TP algorithm
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Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)

raw
filt
ped
q25
q75
threshold
hitend

1. Dynamic per-channel pedestal finding and subtraction
2. Dynamic per-channel noise estimation
3. Finite impulse response filter (7 taps)
4. Sum charge above threshold (in number of σ)
5. Hits from noisy channels (according to offline list) filtered out
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Techniques needed for performance

I Use AVX2 (SIMD) to act on 16 16-bit values with each instruction
I Reduce memory bandwidth by minimizing data copies
I CPU pinning and NUMA-awareness:

I Fix CPU cores on which processing runs (reduce context switches ⇒ latency; increase throughput; could
go further with isolcpus/cgroups)

I Keep data and processing on same CPU socket (maximize memory bandwidth)
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Single-instruction-multiple-data (SIMD)

Credit: Decora at English Wikipedia. CC Attribution-Share Alike 3.0

...(ch0, t0) (ch1, t0) (ch2, t0) (ch3, t0) (ch15, t0)...

...(ch0, t1) (ch1, t1) (ch2, t1) (ch3, t1) (ch15, t1)...

I Elementwise arithmetic, element rearrangement (“shuffles”), select based on mask (“blend”)
I Several generations of Intel SIMD instructions exist. I use AVX2, with 256-bit registers

(introduced 2013)
I AVX-512 exists, but I don’t expect much improvement because clock rate reduces with AVX-512

https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
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Induction hit-finding example

I Full APA in one server. Hits found continuously, buffered and read out in response to trigger
7



Induction hit-finding example

I Full APA in one server. Hits found continuously, buffered and read out in response to trigger
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Resource usage
PID VIRT RES %CPU P COMMAND

218656 29.9g 15.1g 59.2 17 processing
218697 29.9g 15.1g 58.3 22 processing-ind
218652 29.9g 15.1g 58.3 13 processing
218654 29.9g 15.1g 58.3 15 processing
218658 29.9g 15.1g 58.3 19 processing
218629 29.9g 15.1g 57.3 12 processing
218698 29.9g 15.1g 57.3 24 processing-ind
218699 29.9g 15.1g 57.3 28 processing-ind
218700 29.9g 15.1g 57.3 26 processing-ind
218701 29.9g 15.1g 57.3 30 processing-ind
218660 29.9g 15.1g 57.3 21 processing
218704 29.9g 15.1g 57.3 27 processing-ind
218705 29.9g 15.1g 57.3 29 processing-ind
218633 29.9g 15.1g 56.3 16 processing
218635 29.9g 15.1g 56.3 18 processing
218702 29.9g 15.1g 56.3 23 processing-ind
218703 29.9g 15.1g 56.3 25 processing-ind
218706 29.9g 15.1g 56.3 31 processing-ind
218637 29.9g 15.1g 55.3 20 processing
218631 29.9g 15.1g 54.4 14 processing
218690 29.9g 15.1g 42.7 32 boardreader
218685 29.9g 15.1g 40.8 35 flx-disp-0
218686 29.9g 15.1g 40.8 37 flx-disp-1
218687 29.9g 15.1g 40.8 39 flx-disp-2
218689 29.9g 15.1g 40.8 43 flx-disp-4
218677 29.9g 15.1g 39.8 42 flx-disp-4
218688 29.9g 15.1g 39.8 41 flx-disp-3
218673 29.9g 15.1g 38.8 34 flx-disp-0
218674 29.9g 15.1g 38.8 36 flx-disp-1
218675 29.9g 15.1g 38.8 38 flx-disp-2
218676 29.9g 15.1g 38.8 40 flx-disp-3
218678 29.9g 15.1g 30.1 0 boardreader

CPU threads according to top, run 10884, np04-srv-029, Intel
Xeon Gold 6242 CPU @ 2.80GHz.
processing: frame decoding and collection hit finding
processing-ind: induction hit finding
flx-disp-*: FELIX packet decoding

I FELIX block parsing, decoding WIB format, hit
finding on 1 APA of collection and induction
channels on 32 CPU cores

I No cores running flat out
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Towards 2 APAs per server

PID VIRT RES %CPU P COMMAND
259901 40.0g 27.7g 92.1 4 flx-disp-1
259903 40.0g 27.7g 92.1 8 flx-disp-3
259904 40.0g 27.7g 92.1 10 flx-disp-4
259889 40.0g 27.7g 92.1 36 flx-disp-1
259890 40.0g 27.7g 92.1 38 flx-disp-2
259900 40.0g 27.7g 91.6 2 flx-disp-0
259902 40.0g 27.7g 91.6 6 flx-disp-2
259888 40.0g 27.7g 91.6 34 flx-disp-0
259891 40.0g 27.7g 91.6 40 flx-disp-3
259892 40.0g 27.7g 91.6 42 flx-disp-4
259913 40.0g 27.7g 82.8 54 processing-ind
259912 40.0g 27.7g 80.8 44 processing-ind
259918 40.0g 27.7g 80.8 50 processing-ind
259917 40.0g 27.7g 79.8 48 processing-ind
259921 40.0g 27.7g 79.8 52 processing-ind
259915 40.0g 27.7g 79.3 46 processing-ind
259919 40.0g 27.7g 77.3 60 processing-ind
259916 40.0g 27.7g 76.8 58 processing-ind
259920 40.0g 27.7g 76.8 62 processing-ind
259914 40.0g 27.7g 75.9 56 processing-ind
259846 40.0g 27.7g 61.1 22 processing
259850 40.0g 27.7g 59.1 12 processing
259860 40.0g 27.7g 58.6 18 processing
259875 40.0g 27.7g 58.1 20 processing
259856 40.0g 27.7g 57.6 16 processing
259854 40.0g 27.7g 57.1 14 processing
259857 40.0g 27.7g 56.2 28 processing
259848 40.0g 27.7g 55.7 24 processing
259852 40.0g 27.7g 55.7 26 processing
259861 40.0g 27.7g 54.7 30 processing
259905 40.0g 27.7g 32.0 32 flx-reader-0
259893 40.0g 27.7g 31.5 0 flx-reader-0

Run 10964, APA 6 only, P is core # of thread. All even, ie CPU

0

I In this test run, all parsing/decoding/hit finding is
running on one of the two CPU sockets in the
machine
I (CPU % numbers change wrt previous slide because

now both sibling HyperThread cores are being used)
I Further steps towards 2 APA/server demo:

I Show that 2× more memory bandwidth available
I Move artdaq threads onto same socket
I Keep up when triggers are enabled
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Improvements needed for final system

I Two APAs in one host
I Need to be able to take raw data triggers that aren’t time-ordered (can already do this for hits)
I Error handling needs to be added:

I Deal with errors in data
I Deal with problems in hit finding (eg not keeping up, buffers fill)
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Adaptability: proof-of-concept ROI readout

I ROIs for collection channels only
I Rate is low because detector running below nominal HV. Top half of channels are wall-facing 12



Adaptability: proof-of-concept ROI readout

I Each link holds two sets of contiguous channels, so 10 links ⇒ 20 rows in the plot
13



Hit finding successes
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I Self-trigger
I Realtime purity monitoring
I Pulsed neutron source rapid analysis
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Benefits and risks

I Benefits:
I Development/testing/deployment relatively straightforward (1 FTE·yr for initial hit-finding PDSP

demonstration, 1 more for refinements. O(1500) LOC for hit finding)
I Highly flexible: easy to change algorithm
I Gains from improvements in COTS components “for free”

I Risks:
I Memory bandwidth for two APAs/server not yet demonstrated
I Could imagine required algorithm changes that would be difficult (non-channel-parallel tasks like

coherent noise removal; larger required FIR filter)
I Might not meet electrical power consumption requirements
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Marginal costs vs other options

I Suppose we picked another option as baseline, but wanted to keep development of CPU
hit-finding in parallel, eg as potential risk mitigation. What would then be the marginal cost of
retaining CPU hit finding capability?

Option Hitfinding 10s buffer SNB store
A Host Host Host
B FPGA Host Host
C FPGA FPGA FPGA

I To add CPU-based hit finding to option B: Cost is more powerful CPUs and development time
I To add CPU-based hit finding to option C: Cost is more powerful CPUs, development time, and

marginal cost of servers with sufficient memory bandwidth. FPGA also needs to support full
PCIe data transfer
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Criteria
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Features

Which features have existing implementations and/or demonstrators?
I All demonstrated at ProtoDUNE-SP in FELIX board reader:

I Receive data from WIBs
I Noise filtering (extremely basic)
I Hit finding: collection and induction
I Forming trigger primitives and sending to data selection
I Receive data request
I Extract data from buffers
I Send extracted data: raw data and hits
I Decode extracted data offline

What features are missing and how much further development is required?
I No error handling
I Code could generally be cleaner

How does the solution interface to other components of the Upstream DAQ, and wider DAQ?
I In PDSP demonstrator, interfaced with FELIX, ptmp data selection, artdaq metrics
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Adaptability

Were any components that rely on this technology integrated in existing DAQ systems? (e.g.: within
ProtoDUNE-SP DAQ)
I All of it

How would the solution adapt to potential new requirements of the DUNE DAQ? (for example,
different TP algorithms, RoI-based readout)
I Very adaptable: just write the algorithm in C++, recompile and go. Eg, I made a very basic

ROI-based readout proof-of-concept (on top of the existing hit finding) in a few weeks.

Is it possible to tune and align the solution to support new ideas (e.g.: additional interfaces) or are
there intrinsic structures that constrain potential extensions/modifications?
I Not really sure how to answer this. It’s C++ code, so you can do anything code can do. It’s

already interfaced with artdaq, ptmp, the artdaq metrics system, etc. Was able to move it from
the FELIX BR “publisher” config to the “on-host” config fairly straightforwardly. The SIMD
approach means any algorithm that isn’t embarrassingly parallel between channels would be
more difficult
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Reliability

Can you ensure data integrity using this technology?
I Yes. We’re reading all the ADC data already, and reading timestamp and link info from the

header data. Reading more header data will have some cost, but not a huge amount.

How do you handle and mitigate the known failure scenarios (above) and other errors in order to
avoid their propagation to other components?
I FE failure of link. Mustn’t affect other links.

I Links are independent threads, so this is fine. Had this happen plenty of times on ProtoDUNE with no
ill effects

I Link alignment (non-consecutive timestamps)
I Didn’t do this check, but could have (I read the timestamps of every superchunk for

latency-measurement purposes)
I Handle uncompressed data

I Ran everything uncompressed with on-host config, because quickassist zip wasn’t working there.
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Long term support and maintenance
What is the balance between in-house development and COTS components?
I Hardware all FELIX or COTS servers. Software all in-house

Does the solution require specific hardware products? (E.g.: only works with a specific SSD variant,
or with any kind? Requires specific FPGA/CPU models or features? Are there implications for
spares?)
I As written, uses AVX2, available on all recent Intel/AMD processors. Should rewrite using a

library for easier adaptation to new SIMD instruction sets.

Can this solution profit from research and development outside DUNE (eg. by manufacturers, other
experiments, etc.)?
I Maybe? Could have more specialized parsing of the DMA “packets” from FELIX. Other

experiments’ experiences with SIMD/profiling etc, eg
https://indico.ph.ed.ac.uk/event/66/contributions/824/attachments/682/830/EdinburghOptimisation17Feb2020.pdf

How strong and connected is the community of users and partners around the technology?
I Hit finding builds on FELIX technology, so links to FELIX user base. Takes advantage of in-host

data buffering work from CERN collaborators, artdaq (FNAL) for triggering. Hit-finding itself
was mostly just me, but straightforward to expand community

Do we have sufficient engineers and developers with the necessary expertise to support this solution?
I Requirements are pretty low. I developed hit-finding code mostly on my own, having no real

prior experience in this sort of low-level optimized code writing. Got a lot of support from
Roland for system-level tuning.
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Resource requirements

What are the resources (FPGA, cpu-cycles, memory) required by the solution as it stands now, per
APA?
I One Intel Xeon Gold 6242 CPU (32 HT cores, 16 physical cores) can handle a full APA (just):

decoding frames, hit finding on collection+induction channels

What are the future prospects for reducing resource use?
I Algorithm alterations: sum 2 or 4 ticks before processing; estimate pedestals less frequently; no

filtering?
I Format alterations: More convenient format for WIB frames to reduce the processing needed to

decode (already planned: docdb 14947). Make WIB frame format fit better with fixed-size
FELIX blocks?

I Wait for technology improvements (2024 CPUs vs 2019 CPUs)
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Conclusions

I CPU-based hit finding is a relatively straightforward and flexible approach
I Hit finding builds on in-host buffering from FELIX, triggering from artdaq, and data selection

with ptmp. The ProtoDUNE demonstrator is fully integrated with the rest of the DAQ
I The CPU hit-finding has been successfully used for the self-trigger demonstration, for purity

monitoring, and for rapid neutron-source analysis
I Resource usage: 1 APA/server comfortably demonstrated (30 cores). Progress towards 2

APAs/server (with 2019 components)
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Backup slides
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Trigger primitive (hit) finding
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Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)

I Simple hit finding running in CPUs on FELIX BR hosts
1. Decode WIB format, select collection channels
2. Find pedestal and pedestal variance
3. Apply finite impulse response noise filter
4. Sum charge above threshold
I Uses about 60% of a CPU core per link (10/APA)
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Characterization: latency and CPU usage

Run 9413
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I Trigger latency, defined as time between data with timestamp T arriving in FELIX BR, and
trigger request for data with timestamp T arriving in FELIX BR. One histogram per link

I ∼ 3000 triggers in this run, no latencies close to buffer depth (∼ 1s)
I CPU usage: TODO, but approx 2–3 cores per APA for work downstream of hit-finding
I
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Hit-finding details

300 400 500 600 700
Time (TPC ticks)

20

10

0

10

20

30

40

50

60

70

AD
Cs

 (m
ed

ia
n 

su
bt

ra
ct

ed
)

Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)

raw
filt
ped
q25
q75
threshold
hitend

I Pedestal estimated using modified version of “frugal streaming” algorithm (arXiv:1407.1121).
Estimate 25th and 75th %ile similarly to get interquartile range (IQR): threshold is 5 times IQR

I Noise filtering is via a 7-tap finite impulse response filter. It doesn’t really do a lot here. Might
be filter coeff choice/integer approx, but probably just too few taps
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Hit-finding thoughts/possible improvements
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Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)
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I I implemented the current pedestal RMS scheme to show it can be done efficiently, and because
it’s cool. Is it necessary?
I Setting hit threshold as “Nσ” is ∼fixed-rate, but setting hit threshold as N ADC is ∼fixed-efficiency.

Not so obvious to me which is best
I Pedestal and RMS don’t really change on the single-tick timescale, so maybe this scheme isn’t worth the

processing
I 5 “sigma” threshold is way too high for serious physics
I IQR calculated in raw ADC but applied in filtered ADC. Should be consistent 28



Hit-finding organization, old setup

Raw q

subscriber

processing

trigger match

Recv netio msg,
push to raw q
push to processing q

raw q

processing q

pop processing q
Unpack,
find hits

push hits to
hit q, ptmp

Raw qhit q

recv trig req
Pop raw data q, 
hit q

pass 
fragments 
to artdaq

I One copy of this in each BR
I Trigger matcher and hit finder each get their own copy of the raw data
I Avoids sharing-related bugs, but requires data copy (extra 10 GB/s memory throughput, CPU

cycles)
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Hit-finding organization: on-host config

Raw q

dispatcher

processing

trigger match

Get msg from DMA,
push to raw q
push to processing q

raw q

processing q

pop processing q
Unpack,
find hits

push hits to
hit q, ptmp

Raw qhit q

recv trig req
Pop raw data q, 
hit q

pass 
fragments 
to artdaq

I The logic is not much different, but code got rearranged a bit
I One copy of this diagram per link (5 links/BR, 2 BRs/APA)
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Digression: lockless single-producer single-consumer queues

I Single-producer, single-consumer queues allow exactly one writer thread to push items to the
queue, and exactly one reader thread to pop items off the queue

I The FELIX BR uses folly::ProducerConsumerQueue. Interface is: bool read(T&), bool
write(T), T* frontPtr(), void popFront()

I Optimization: reduce copies by adding T* nextWritePtr(), void advanceWritePtr()
interface: can write FELIX data directly into queue
This is just an accident of the way FELIX works, I think: the data payload we’re interested in may be split across multiple PCIe “blocks”, so the
dispatcher thread has to parse the block info to find the data payload. Then there’s a netio::message::serialize_to_usr_buffer(char* buf)
function that puts the payload into buf. With nextWritePtr(), we can serialize the message straight into the SPSC queue without having to first
serialize it to a temporary buffer, then copy it to the queue.

I Still need two queues (=two copies of data) for trigger matcher and hit finder. Would like to
reduce this.

31

https://github.com/facebook/folly/blob/master/folly/docs/ProducerConsumerQueue.md


“Producer-Observer-Consumer” queue
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Adds an “observer” thread (in this case, the hit finder). Read pointer can’t pass observer pointer, just like read can’t pass write in the SPSC queue. So every
item gets pushed, then observed, then read, all without copies. There’s probably an alternative way of doing this with two queues and pointers, but this is the
way I did it. 32



Using P-O-C queue

dispatcher

processing

trigger match

Get msg from DMA,
push to raw q
push to processing q

observe raw q
Unpack,
find hits

push hits to
hit q, ptmp

Raw qhit q

recv trig req
Pop raw data q, 
hit q

pass 
fragments 
to artdaq

Raw qraw q

“producer-observer-consumer queue”

I One less copy; logic still substantially the same
I This was a noticeable improvement in performance (ie, lower CPU%1), but I can’t find the

number in my notes

1Is CPU% really the most useful metric? Things we care about are the binary keeps up/doesn’t keep up, and electrical power
usage. I don’t know the relationship between CPU% and power usage, though I expect it’s complicated. Lower CPU% at least means
that we could do more work and still keep up. See
http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html for another critique of CPU% as a metric
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Adding induction hit-finding

Raw q

dispatcher

processing

trigger match

Get FELIX block,
push to raw q

raw q

Observe raw q find coll hits
push hits to
hit q, ptmp

Raw qhit q

recv trig req Pop raw q, hit q
pass 
fragments 
to artdaq

induction
processing

pop ind q Find ind hits
push hits to
hit q, ptmp

Unpack WIB format,
Push induction q

Raw qinduction q

“producer-observer-consumer queue”

I Just run the collection-wire algorithm on the induction wires. (See

http://indico.fnal.gov/event/22542/contribution/0/material/slides/0.pdf for the limitations of this approach)

I Note: WIB expansion and collection hit-finding on same thread. Induction wire processing gets
its own thread. Ratio of induction:collection wires is 5:3

I How can we do better?
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Digression: Non-uniform memory architecture (NUMA)

CPU 0

Core 0 Core 1

RAM

NUMA node 0

CPU 1

Core 0 Core 1

RAM

NUMA node 1

x24 cores x24 cores

SlowF
as

t

F
as

t

I RAM is “closer” to one CPU than the other. CPUs have faster access to the “closer” RAM,
slower access to the “further” RAM

I Items within the same NUMA node are closest
I Upshot: arrangement of data in memory and cores used for processing is important
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Digression: NUMA and CPU pinning

I Pin threads to a given core and ensure that
memory is allocated on the same NUMA
node. Maximizes throughput

I FELIX card is connected to NUMA 0
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CPU pinning, old method

disp
link 0

disp
link 1

hitfind
link 1

hitfind
link 0

I All data crosses NUMA interconnect
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CPU pinning, new method

disp
link 0

hitfind
link 0

hitfind
link 1

disp
link 1

I Only half of data crosses NUMA interconnect
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Old vs new

Run 10876, old config

PID VIRT RES %CPU P COMMAND
104396 29.9g 15.1g 82.5 30 processing-ind
104397 29.9g 15.1g 81.6 22 processing-ind
104398 29.9g 15.1g 81.6 24 processing-ind
104399 29.9g 15.1g 81.6 26 processing-ind
104400 29.9g 15.1g 80.6 28 processing-ind
104327 29.9g 15.1g 73.8 13 processing
104329 29.9g 15.1g 73.8 15 processing
104333 29.9g 15.1g 72.8 19 processing
104337 29.9g 15.1g 72.8 21 processing
104331 29.9g 15.1g 71.8 17 processing
104342 29.9g 15.1g 60.2 1 processing
104352 29.9g 15.1g 60.2 3 processing
104354 29.9g 15.1g 60.2 5 processing
104356 29.9g 15.1g 60.2 7 processing
104358 29.9g 15.1g 60.2 9 processing
104405 29.9g 15.1g 58.3 23 processing-ind
104385 29.9g 15.1g 57.3 36 flx-disp-1
104387 29.9g 15.1g 57.3 40 flx-disp-3
104402 29.9g 15.1g 57.3 25 processing-ind
104372 29.9g 15.1g 57.3 4 flx-disp-1
104373 29.9g 15.1g 57.3 6 flx-disp-2
104384 29.9g 15.1g 56.3 34 flx-disp-0
104386 29.9g 15.1g 56.3 38 flx-disp-2
104388 29.9g 15.1g 56.3 42 flx-disp-4
104401 29.9g 15.1g 56.3 31 processing-ind
104403 29.9g 15.1g 56.3 27 processing-ind
104371 29.9g 15.1g 56.3 2 flx-disp-0
104404 29.9g 15.1g 55.3 29 processing-ind
104374 29.9g 15.1g 55.3 8 flx-disp-3
104375 29.9g 15.1g 55.3 10 flx-disp-4
104389 29.9g 15.1g 35.0 32 boardreader
104376 29.9g 15.1g 33.0 0 boardreader

Run 10884, new config

PID VIRT RES %CPU P COMMAND
218656 29.9g 15.1g 59.2 17 processing
218697 29.9g 15.1g 58.3 22 processing-ind
218652 29.9g 15.1g 58.3 13 processing
218654 29.9g 15.1g 58.3 15 processing
218658 29.9g 15.1g 58.3 19 processing
218629 29.9g 15.1g 57.3 12 processing
218698 29.9g 15.1g 57.3 24 processing-ind
218699 29.9g 15.1g 57.3 28 processing-ind
218700 29.9g 15.1g 57.3 26 processing-ind
218701 29.9g 15.1g 57.3 30 processing-ind
218660 29.9g 15.1g 57.3 21 processing
218704 29.9g 15.1g 57.3 27 processing-ind
218705 29.9g 15.1g 57.3 29 processing-ind
218633 29.9g 15.1g 56.3 16 processing
218635 29.9g 15.1g 56.3 18 processing
218702 29.9g 15.1g 56.3 23 processing-ind
218703 29.9g 15.1g 56.3 25 processing-ind
218706 29.9g 15.1g 56.3 31 processing-ind
218637 29.9g 15.1g 55.3 20 processing
218631 29.9g 15.1g 54.4 14 processing
218690 29.9g 15.1g 42.7 32 boardreader
218685 29.9g 15.1g 40.8 35 flx-disp-0
218686 29.9g 15.1g 40.8 37 flx-disp-1
218687 29.9g 15.1g 40.8 39 flx-disp-2
218689 29.9g 15.1g 40.8 43 flx-disp-4
218677 29.9g 15.1g 39.8 42 flx-disp-4
218688 29.9g 15.1g 39.8 41 flx-disp-3
218673 29.9g 15.1g 38.8 34 flx-disp-0
218674 29.9g 15.1g 38.8 36 flx-disp-1
218675 29.9g 15.1g 38.8 38 flx-disp-2
218676 29.9g 15.1g 38.8 40 flx-disp-3
218678 29.9g 15.1g 30.1 0 boardreader

I Significant reduction in CPU% by rearranging thread pinning in a NUMA-aware way
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Induction hit-finding example

I Full APA in one server. Hits found continuously, buffered and read out in response to trigger
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Induction hit-finding example

I Full APA in one server. Hits found continuously, buffered and read out in response to trigger
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Improving induction hit-finding

Raw q

dispatcher

processing

trigger match

Get FELIX block,
push to raw q,
Unpack WIB format

raw q

find coll hits
push hits to
hit q, ptmp

Raw qhit q

recv trig req Pop raw q, hit q
pass 
fragments 
to artdaq

induction
processing

pop ind q Find ind hits
push hits to
hit q, ptmp

pop coll q

Raw qinduction q

Raw qcollection q

I Use some spare cycles on the dispatcher threads to free up cycles on the collection-wire
processing thread

I Aim: reduce CPU% enough that we can use every HT core, process full APA on one socket
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Full APA processing on half a server! (nearly)
PID VIRT RES %CPU P COMMAND

259901 40.0g 27.7g 92.1 4 flx-disp-1
259903 40.0g 27.7g 92.1 8 flx-disp-3
259904 40.0g 27.7g 92.1 10 flx-disp-4
259889 40.0g 27.7g 92.1 36 flx-disp-1
259890 40.0g 27.7g 92.1 38 flx-disp-2
259900 40.0g 27.7g 91.6 2 flx-disp-0
259902 40.0g 27.7g 91.6 6 flx-disp-2
259888 40.0g 27.7g 91.6 34 flx-disp-0
259891 40.0g 27.7g 91.6 40 flx-disp-3
259892 40.0g 27.7g 91.6 42 flx-disp-4
259913 40.0g 27.7g 82.8 54 processing-ind
259912 40.0g 27.7g 80.8 44 processing-ind
259918 40.0g 27.7g 80.8 50 processing-ind
259917 40.0g 27.7g 79.8 48 processing-ind
259921 40.0g 27.7g 79.8 52 processing-ind
259915 40.0g 27.7g 79.3 46 processing-ind
259919 40.0g 27.7g 77.3 60 processing-ind
259916 40.0g 27.7g 76.8 58 processing-ind
259920 40.0g 27.7g 76.8 62 processing-ind
259914 40.0g 27.7g 75.9 56 processing-ind
259846 40.0g 27.7g 61.1 22 processing
259850 40.0g 27.7g 59.1 12 processing
259860 40.0g 27.7g 58.6 18 processing
259875 40.0g 27.7g 58.1 20 processing
259856 40.0g 27.7g 57.6 16 processing
259854 40.0g 27.7g 57.1 14 processing
259857 40.0g 27.7g 56.2 28 processing
259848 40.0g 27.7g 55.7 24 processing
259852 40.0g 27.7g 55.7 26 processing
259861 40.0g 27.7g 54.7 30 processing
259905 40.0g 27.7g 32.0 32 flx-reader-0
259893 40.0g 27.7g 31.5 0 flx-reader-0
260117 40.0g 27.7g 2.5 37 boardreader
260118 40.0g 27.7g 2.0 21 boardreader
260129 40.0g 27.7g 1.0 25 boardreader
260122 40.0g 27.7g 0.5 0 ZMQbg/3
260128 40.0g 27.7g 0.5 11 boardreader
260131 40.0g 27.7g 0.5 13 boardreader
260130 40.0g 27.7g 0.5 19 boardreader
260132 40.0g 27.7g 0.5 29 boardreader
260133 40.0g 27.7g 0.5 31 boardreader

I It nearly worked! 10 dispatcher threads, 10
collection-wire processing threads, 10
induction-wire processing threads, 2 card-reader
threads, fit on one CPU socket (Intel Xeon Gold 6242 CPU @

2.80GHz, 32 (HT) cores)

I Have to use both HyperThread cores in each
physical core

I Why you might care: suggests we can run 2 APAs
per server, with 2019 technology

I (Not quite: haven’t shown that there’s a factor 2
more memory bandwidth available, and some
artdaq threads are running on NUMA 1)

I I tried again yesterday: CPU usage is higher, and
can’t keep up when triggers start. But this close!

I Run 10964, APA 6 only, P is core # of thread. All even, ie CPU 0
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Poor man’s ROI readout

12 ticks
(not to scale)

96 channels

I Consider each 12-tick×96-collection-channel block as a quantum for reading out
I Just collection channels for now
I A block is “active” if, in any of its (non-noisy) channels, either: a hit was ongoing at the end of

the 12 ticks, or a hit ended during the 12 ticks. Read out active blocks and blocks ±50 ticks
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Poor man’s ROI readout: implementation
Raw q

dispatcher

roi push

trigger match

Get FELIX block,
push to raw q,
Unpack WIB format

raw q

Raw qhit q

recv trig req Pop raw q,
hit q, roi q

pass 
fragments 
to artdaq

induction
processing

pop ind q Find ind hits
push hits to
hit q, ptmp

pop ts q

Raw qinduction q

Raw qcollection q

processing find coll hits
push hits to
hit q, ptmp

observe coll q

Raw qactive ts q

find windows

Raw qroi q

push windows
to roi q

if window has hits

I Need complicated implementation to get the 50-tick-before condition (otherwise we could just
directly push a block when it’s active). Suppress known noisy channels

I ROIs, like hits, are found continuously and buffered, waiting for trigger request. Each ROI
carries a timestamp
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Poor man’s ROI readout: example, all waveforms

I Rate is low because detector running below nominal HV. Top half of channels are wall-facing
46



Poor man’s ROI readout: example, ROIs

I Each link holds two contiguous sets of channels, so it looks like 20 rows in the plot
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But what about latency?

I Linux is not a realtime system: no guarantees that your code is scheduled to run within a fixed
time of some event occurring. The kernel scheduler could decide not to run your process for
some arbitrary amount of time

I I don’t think this is a problem in our case:
I Buffer depth is several seconds, not microseconds
I With CPU pinning, scheduler is smart and doesn’t schedule other tasks on pinned cores
I We could go further and force the kernel not to schedule on the cores we’re using, with isolcpus
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Processor comparison

I From ark.intel.com, retrieved
2020-07-29

I Middle column is the processor I’ve
reported results from
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