
1

Erdem Motuk

29/07/2020

Upstream DAQ Technology Review

10s Buffer Management Firmware

2

• System-level view

• Compression block presentation (from Pip Hamilton)

• Description of the firmware structure

• Description of the inputs and outputs

• Description of the firmware sub-modules

• Current software interfaces for test and debug

• Implementation results and performance figures

• Current limitations

• Integration with other modules

• To-do list

Outline

3

• System-level view , memory management

28/07/2020 Pip Hamilton 4

Compression Overview
• The compression scheme we are using is Fibonacci encoding, using the

Fibonacci sequence as a ‘base’.

e.g. 101011 = 1 + 3 + 8 = 12

• Encoded number is length i+1, where i = index of largest Fibonacci number

smaller than input.

• Should be able to deliver required compression factor C > 2 (likely closer to 3).

1 2 3 5 8
Extra 1 signals end of word:
code words always end uniquely in ‘11’.

Can be toggled on (default) or off (debug mode, incompressible data)

Firmware Implementation

28/07/2020 Pip Hamilton 5

Performance / Resource Use

Worst Negative

Slack

Worst Hold Slack Worst Pulse Width

Slack

1.048 ns 0.016 ns 1.458 ns

Timing

• A complete v.0 of the compression module has been written, simulated and

synthesised.

• It meets its constraints for timing and resource usage (most demanding

requirement being block RAM usage)

• Compression factor delivered currently under

assessment.

CLB LUTs CLB Registers Block RAM

213/274080 (0.1%) 337/548160 (0.1%) 337/912 (37%)

Resource Usage (ZU9EG – ZCU102 board FPGA)

28/07/2020 Pip Hamilton 6

Decompression

• Tools to parse and decode the output of the compression

have also been written for validation purposes: these are

easily adaptable for use as part of the software chain.

• Initial implementation of on-line decompression routine

(Dave Newbold) ~ 80MByte/s per core.

7

• System-level view (again)

8

Super
Packet

Formatter

AXI4 Memory
Mapped Interface

Write
Interface

Read
Interface

XILINX MIG DDR4
RAM

Command
FIFO

40x
16-bit AXI4S

512-bit
data

Xilinx
AXI4MM

Smart
Connect

AXI4MM
signals

Output
Selector

Event
Fragment
Requests

Event Fragments –
128-bit at 300 MHZ

Supernova
Trigger

AXI4S to
NVME

Read
address

Super-packet
Indexer

Address of super-packet

• AXI4 memory interface handles the transition from AXI4 streams to AXI4 memory mapped access to the MIG.

Supernova data
256-bit at 300 MHz

Time-stamps

Time-stamps

• 10s Buffer management firmware block diagram

From the compression block

9

Inputs to the buffer management block – From the compression block

• Compressed “super packets”, each carrying 64 12-bit ADC samples from 64 wires,

compressed on to a variable number of 16-bit words

• Each super packet comes in a dedicated input link (pipeline) to the block

• 40 of these links corresponding to a total of 2560 wires form the inputs to the block

• The inputs follow the AXI4-stream format that we use for the Upstream-DAQ firmware

• 16-bit words at each clock cycle with extra signals indicating valid data, start and end of

the packet, flow-control etc.

Link 0

Link 39

Timestamp Payload …TimestampFlags Timestamp Timestamp …… Payload

Timestamp Payload …TimestampFlags Timestamp Timestamp …… Payload

10

• Inputs to the buffer management block – From event selection

• These are named as event fragment requests in the block diagram – form the “trigger
command”

• Follows the AXI4-stream format with 16-bit words at each clock cycle (250 MHz)
• Trigger command ID followed by the trigger start time and trigger end time

• Inputs to the buffer management block – From supernova trigger

• This starts reading the compressed wire data from the DDR4 memory to the NVME

interface

• NVME interface forms the 100-sec supernova storage buffer

• A “write” to an IPBus register to start

• Number of ADC samples to read for the supernova trigger is configurable (at the

moment for test purposes – via an IPBus register)

11

• Outputs from the buffer management block – Event fragments

• These correspond to the data read from the DDR4 RAM as responses to the event

fragment requests

• These follow the AXI4-stream format with 128-bit words at each clock cycle (300 MHz)

• The command ID of the event fragment request is placed at the start along with the

other header information

• Outputs from the buffer management block – Supernova trigger data

• These correspond to the data read from the DDR4 RAM as responses to the

supernova triggers

• These follow the AXI4-stream format with 256-bit words at each clock cycle (300 MHz)

12

MUX

Stream
FIFO

512x128

Input
FIFO

16x4096

16-bit AXI4S

AXI4S clk (200 -
250 MHz)

Magic no./ Length

DDR4 clk

Input
FIFO

16x4096

16-bit AXI4S

AXI4S clk (200 -
250 MHz)

Magic no./ Length

DDR4 clk

64-bit data
/ wr_en

512-bit data

Read
pointer

Super-packet
Indexer

DDR4 write address
corresponding to a “write-run”

• Mux operates in a round-robin fashion makes sure that all super-packets corresponding to the same time period is written
consecutively to the DDR4 memory

• Writing the data from the super-packets from all 40 links corresponding to the same time period is named as a “write-run”

Length, Super-packet
“write-run” indicator

• Detailed description of the firmware – Super-packet formatter

CAFE

Magic word

BEEF

Length Link No.

PayloadTimestamp Payload …

TimestampFlags Timestamp Timestamp

…… … Payload

Extra header information added to
each super-packet

Memory interface block

Initial timestamp

“write-run” end signal

Flow ctrl

13

AXI4 Memory
Mapped Interface

Write
Interface

Read
Interface

512-bit data

Write-run
start/end

Read/Write
pointers

• Block diagram and the important AXI4 memory mapped
signals of the DDR4 write and read interface.

• Multiplexes super-packet data writes and supernova and
event selection request reads

• Writes and reads are performed in 4 KByte chunks in order
to efficiently use the DDR4 access bandwidth and optimise
the write/read latencies (exception is at the end of a “write-
run” – data could be less than 4 KByte)

• The address information from the super-packet indexer is
required to generate the read signals.

• For the write case the module calculates the write signals
(address, length, strobe).

• When the memory is full the write address rolls over to the
beginning. Circular buffer.

512-bit read data and valid to the output control module and supernova buffer interface

• Detailed description of the firmware – Memory Interface

Supernova read start /
no.of samples

Event selection read
start
Start/End addresses

AXI WRITE

CHANNEL

AXI READ

CHANNEL

AXI

RESPONSE

AXI READ

RESPONSE

14

• Detailed description of the firmware – Super-packet Indexer

• Super-packet indexer holds the write addresses

corresponding to the beginning of each write-run (40

super-packet links)

• Initial timestamp is written at the very beginning of

the buffer storage operation

• The current size of the index RAM is 32x16384 –

16K address entries

• Upon an event selection request, the start and end

timestamps of a trigger command is sent to the

indexer

• Indices of the start and end read addresses are

calculated

• These indices are read, and the resulting addresses

are sent to the memory interface

Index RAM

Trigger command valid

Start/End timestamps

Write-run write address

Write-run finished signal

Initial timestamp

Memory read
request
Memory read
addresses

Ctrl block

15

• Detailed description of the firmware – Output selector

• The event fragment output selector detects the magic

word from the incoming DDR4 data to detect a super-

packet

• The timestamp is compared against the start and end

times from the current event selection command

• Each sub-block has their own FIFOs for the incoming

data – flow ctrl signals are generated to provide

backpressure

• As a result in the extreme cases loss of data can occur

– old data is written over without being read

Event fragment

selector

Supernova data

selector

Trigger command
valid
Start/End
timestamps

Data valid from DDR4

Event fragment
stream

Data read from DDR4

Supernova buffer
stream

Flow ctrl for
event frag. sel.
Flow ctrl for
supernova sel.

Supernova
trigger on

16

Event

selection

command

generator

• Extra firmware blocks for test and debug

Sink for the

event

fragments

Block

RAM

IPBus
interface

IPBus
interface

Super
Packet
Format

ter AXI4 Memory
Mapped
Interface

Write
Interface

Read
Interface

XILINX
MIG

DDR4
RAM

Command
FIFO

AXI4MM
Smart

Connec
t

AXI4MM
signals

Output
Selector

AXI4S to
NVME

Super-packet
Indexer

Input Data

Generator

Superpackets

Event selection packet

• The input data generator block generates the super-packets from an initial timestamp.
• For each super-packet run the timestamp is incremented by 64
• The data is a counter counting from 0 to payload length – For verifying correct write/read operation
• Event selection command generator generates an event selection packet from IPBus writes
• The sink takes a snapshot of the output in a RAM to be read by IPBus

Event
fragments

Supernova
trigger
data

IPBus
interface

17

⚫ Software Interfaces

⚫ Current IPBus registers for debug:
− Initialise data send : Starts sending the data to be written to the DDR4 memory. The data is generated in the raw

data packet format and has a counter for ADC samples. 40 channels of data exist each corresponding to a super
packet.

− Number of packets to be sent : This sets the number of super packets to be sent to the buffer management block.

− Event selection command generate : These registers are used to generate the event selection command. There is a
register for command ID, trigger start time and trigger end time.

− Event selection command issue : This starts sending the event selection command generated.

− Input FIFOs enable : This enables the FIFOs at the input of the buffer management which means enabling the
whole buffer management operation.

− Supernova trigger : This starts the reading of the data stored in DDR4 for the supernova trigger.

− Supernova trigger no of samples : This sets the number of samples (no of 16-bit words) to be read for the
supernova trigger.

− B128 sink : This is a snapshot FIFO storing the data read from the DDR4 memory as a result of an event selection
command.

18

⚫ Implementation results

⚫ The buffer management block and the corresponding test/debug blocks are implemented for two
different hardware platforms: ZCU102 board and the KCU105 board – timing closure is achieved for both

KCU105 ZCU102

19

⚫ Implementation results – Visualisation of a write and read operation (4KB size)

Write
Operation

Read
Operation

20

⚫ Implementation results – Latencies and throughput for KCU105

⚫ 64-bit physical RAM connection for KCU105 (faster), 16-bit physical RAM connection for ZCU102

⚫ Write and read throughputs are 512-bit at 300 MHz (19.2 GByte/s – theoretical maximum AXI4 access
through MIG) - in practice this figure is lower (latencies and other effects on throughput)

⚫ Using 4KByte accesses optimize the latencies and throughput

⚫ In practice (in the case of constant writes and reads) average write latency ~15 clock cyles (50 ns)

⚫ In practice a 4KB write operation takes ~83 clock cyles (276.4 ns)

⚫ Achievable write speed 14.48 GByte/s

⚫ In practice average read latency ~30 clock cycles (100 ns)

⚫ In practice a 4KB read operation takes ~98 clock cycles (326 ns)

⚫ Achievable read speed 12.26 GByte/s

⚫ The proof of concept design shows the memory access speed is adequate for the application – 2MHz x
2560 x 2 = 10.24 GByte/s incoming data speed – With ~2.6 compression it’s ~4 Gbyte/s

21

⚫ Current limitations

⚫ The size of the super-packet indexer is the main limitation

⚫ Currently 16384 entries are held which correspond to 32us x16K

⚫ The current data selection granularity is 32 us

⚫ This can be increased to support longer time periods

⚫ The size of the index RAM can be increased as well – More BlockRAM usage

22

⚫ Integration with the nVME interface

− The buffer management block is integrated with the NVMe stream formatter for the KCU105
board – timing closure is achieved with the stream formatted running at 300 MHz.

Detailed view – Includes a Chipscope block for avoiding logic
optimisation

23

⚫ To-do list

⚫ Porting the firmware to other boards containing SSDs

⚫ Testing with the compression and nVME interface

⚫ Better scripting to provide event selection commands at realistic
frequencies

⚫ More characterisation of the latencies and throughput

⚫ Combining writes, supernova reads, and event fragments reads in a
stress-test scenario

⚫ Integration with the compression

⚫ Integration with the hit finder firmware
23

	Erdem Motuk 29/07/2020
	Outline
	Slide 3
	Compression Overview
	Performance / Resource Use
	Decompression
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Extra firmware blocks for test and debug
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

