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• System-level view

• Compression block presentation (from Pip Hamilton)

• Description of the firmware structure

• Description of the inputs and outputs

• Description of the firmware sub-modules

• Current software interfaces for test and debug

• Implementation results and performance figures

• Current limitations

• Integration with other modules

• To-do list

Outline
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• System-level view , memory management
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Compression Overview
• The compression scheme we are using is Fibonacci encoding, using the 

Fibonacci sequence as a ‘base’.

e.g.   101011 = 1 + 3 + 8 = 12

• Encoded number is length i+1, where i = index of largest Fibonacci number 

smaller than input.

• Should be able to deliver required compression factor C > 2 (likely closer to 3).

1 2 3 5 8
Extra 1 signals end of word:
code words always end uniquely in ‘11’.

Can be toggled on (default) or off (debug mode, incompressible data)

Firmware Implementation
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Performance / Resource Use

Worst Negative 

Slack

Worst Hold Slack Worst Pulse Width 

Slack

1.048 ns 0.016 ns 1.458 ns

Timing

• A complete v.0 of the compression module has been written, simulated and 

synthesised.

• It meets its constraints for timing and resource usage (most demanding 

requirement being block RAM usage)

• Compression factor delivered currently under 

assessment.

CLB LUTs CLB Registers Block RAM

213/274080 (0.1%) 337/548160 (0.1%) 337/912 (37%)

Resource Usage (ZU9EG – ZCU102 board FPGA)
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Decompression

• Tools to parse and decode the output of the compression 

have also been written for validation purposes: these are 

easily adaptable for use as part of the software chain.

• Initial implementation of on-line decompression routine 

(Dave Newbold) ~ 80MByte/s per core.
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• System-level view (again)
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128-bit at 300 MHZ

Supernova 
Trigger

AXI4S to 
NVME

Read 
address

Super-packet 
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• AXI4 memory interface handles the transition from AXI4 streams to AXI4 memory mapped access to the MIG.

Supernova data 
256-bit at 300 MHz

Time-stamps

Time-stamps

• 10s Buffer management firmware block diagram

From the compression block
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Inputs to the buffer management block – From the compression block

• Compressed “super packets”, each carrying 64 12-bit ADC samples from 64 wires, 

compressed on to a variable number of 16-bit words

• Each super packet comes in a dedicated input link (pipeline) to the block

• 40 of these links corresponding to a total of 2560 wires form the inputs to the block

• The inputs follow the AXI4-stream format that we use for the Upstream-DAQ firmware

• 16-bit words at each clock cycle with extra signals indicating valid data, start and end of 

the packet, flow-control etc.

Link 0

Link 39

Timestamp Payload …TimestampFlags Timestamp Timestamp …… Payload

Timestamp Payload …TimestampFlags Timestamp Timestamp …… Payload
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• Inputs to the buffer management block – From event selection

• These are named as event fragment requests in the block diagram – form the “trigger 
command”

• Follows the AXI4-stream format with 16-bit words at each clock cycle (250 MHz)
• Trigger command ID followed by the trigger start time and trigger end time

• Inputs to the buffer management block – From supernova trigger

• This starts reading the compressed wire data from the DDR4 memory to the NVME 

interface

• NVME interface forms the 100-sec supernova storage buffer

• A “write” to an IPBus register to start 

• Number of ADC samples to read for the supernova trigger is configurable (at the 

moment for test purposes – via an IPBus register)
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• Outputs from the buffer management block – Event fragments

• These correspond to the data read from the DDR4 RAM as responses to the event 

fragment requests

• These follow the AXI4-stream format with 128-bit words at each clock cycle (300 MHz)

• The command ID of the event fragment request is placed at the start along with the 

other header information 

• Outputs from the buffer management block – Supernova trigger data

• These correspond to the data read from the DDR4 RAM as responses to the 

supernova triggers

• These follow the AXI4-stream format with 256-bit words at each clock cycle (300 MHz)
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MUX

Stream 
FIFO 

512x128

Input 
FIFO 

16x4096

16-bit AXI4S

AXI4S clk (200 -
250 MHz)

Magic no./ Length

DDR4 clk

Input 
FIFO 

16x4096

16-bit AXI4S

AXI4S clk (200 -
250 MHz)

Magic no./ Length

DDR4 clk

64-bit data 
/ wr_en

512-bit data 

Read 
pointer

Super-packet 
Indexer

DDR4 write address 
corresponding to a “write-run”

• Mux operates in a round-robin fashion makes sure that all super-packets corresponding to the same time period is written 
consecutively to the DDR4 memory

• Writing the data from the super-packets from all 40 links corresponding to the same time period is named as a “write-run”

Length, Super-packet 
“write-run” indicator

• Detailed description of the firmware – Super-packet formatter

CAFE

Magic word

BEEF

Length Link No.

PayloadTimestamp Payload …

TimestampFlags Timestamp Timestamp

…… … Payload

Extra header information added to 
each super-packet

Memory interface block

Initial timestamp

“write-run” end signal

Flow ctrl
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AXI4 Memory 
Mapped Interface

Write 
Interface

Read 
Interface

512-bit data 

Write-run 
start/end

Read/Write 
pointers

• Block diagram and the important AXI4 memory mapped 
signals of the DDR4 write and read interface.

• Multiplexes super-packet data writes and supernova and 
event selection request reads

• Writes and reads are performed in 4 KByte chunks in order 
to efficiently use the DDR4 access bandwidth and optimise 
the write/read latencies (exception is at the end of a “write-
run” – data could be less than 4 KByte)

• The address information from the super-packet indexer is 
required to generate the read signals.

• For the write case the module calculates the write signals 
(address, length, strobe).

• When the memory is full the write address rolls over to the 
beginning. Circular buffer.

512-bit read data and valid to the output control module and supernova buffer interface

• Detailed description of the firmware – Memory Interface

Supernova read start / 
no.of samples

Event selection read 
start
Start/End addresses

AXI WRITE 

CHANNEL

AXI READ 

CHANNEL

AXI 

RESPONSE

AXI READ 

RESPONSE
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• Detailed description of the firmware – Super-packet Indexer

• Super-packet indexer holds the write addresses 

corresponding to the beginning of each write-run (40 

super-packet links)

• Initial timestamp is written at the very beginning of 

the buffer storage operation

• The current size of the index RAM is 32x16384 –

16K address entries

• Upon an event selection request, the start and end 

timestamps of a trigger command is sent to the 

indexer

• Indices of the start and end read addresses are 

calculated

• These indices are read, and the resulting addresses 

are sent to the memory interface 

Index RAM

Trigger command valid

Start/End timestamps

Write-run write address

Write-run finished signal

Initial timestamp

Memory read 
request
Memory read 
addresses

Ctrl block
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• Detailed description of the firmware – Output selector

• The event fragment output selector detects the magic 

word from the incoming DDR4 data to detect a super-

packet

• The timestamp is compared against the start and end 

times from the current event selection command

• Each sub-block has their own FIFOs for the incoming 

data – flow ctrl signals are generated to provide 

backpressure

• As a result in the extreme cases loss of data can occur 

– old data is written over without being read

Event fragment 

selector 

Supernova data 

selector

Trigger command 
valid
Start/End 
timestamps

Data valid from DDR4

Event fragment 
stream

Data read from DDR4

Supernova buffer 
stream

Flow ctrl for 
event frag. sel.
Flow ctrl for 
supernova sel.

Supernova 
trigger on
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Event 
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• Extra firmware blocks for test and debug

Sink for the 

event 

fragments

Block 

RAM

IPBus
interface

IPBus
interface
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Packet 
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ter AXI4 Memory 
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t
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signals

Output 
Selector

AXI4S to 
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Super-packet 
Indexer

Input Data 

Generator

Superpackets

Event selection packet

• The input data generator block generates the super-packets from an initial timestamp. 
• For each super-packet run the timestamp is incremented by 64
• The data is a counter counting from 0 to payload length – For verifying correct write/read operation
• Event selection command generator generates an event selection packet from IPBus writes
• The sink takes a snapshot of the output in a RAM to be read by IPBus

Event 
fragments

Supernova 
trigger 
data

IPBus
interface
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⚫ Software Interfaces

⚫ Current IPBus registers for debug:
− Initialise data send : Starts sending the data to be written to the DDR4 memory. The data is generated in the raw 

data packet format and has a counter for ADC samples. 40 channels of data exist each corresponding to a super 
packet.

− Number of packets to be sent : This sets the number of super packets to be sent to the buffer management block.

− Event selection command generate : These registers are used to generate the event selection command. There is a 
register for command ID, trigger start time and trigger end time.

− Event selection command issue : This starts sending the event selection command generated.

− Input FIFOs enable : This enables the FIFOs at the input of the buffer management which means enabling the 
whole buffer management operation.

− Supernova trigger : This starts the reading of the data stored in DDR4 for the supernova trigger.

− Supernova trigger no of samples : This sets the number of samples (no of 16-bit words) to be read for the 
supernova trigger.

− B128 sink : This is a snapshot FIFO storing the data read from the DDR4 memory as a result of an event selection 
command.
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⚫ Implementation results

⚫ The buffer management block and the corresponding test/debug blocks are implemented for two 
different hardware platforms: ZCU102 board and the KCU105 board – timing closure is achieved for both

KCU105 ZCU102
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⚫ Implementation results – Visualisation of a write and read operation (4KB size)

Write 
Operation

Read 
Operation
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⚫ Implementation results – Latencies and throughput for KCU105 

⚫ 64-bit physical RAM connection for KCU105 (faster), 16-bit physical RAM connection for ZCU102

⚫ Write and read throughputs are 512-bit at 300 MHz (19.2 GByte/s – theoretical maximum AXI4 access 
through MIG) - in practice this figure is lower (latencies and other effects on throughput)

⚫ Using 4KByte accesses optimize the latencies and throughput

⚫ In practice ( in the case of constant writes and reads) average write latency  ~15 clock cyles (50 ns)

⚫ In practice a 4KB write operation takes ~83 clock cyles (276.4 ns)  

⚫ Achievable write speed 14.48 GByte/s

⚫ In practice average read latency ~30 clock cycles (100 ns)

⚫ In practice a 4KB read operation takes ~98 clock cycles (326 ns)

⚫ Achievable read speed 12.26 GByte/s

⚫ The proof of concept design shows the memory access speed is adequate for the application – 2MHz x 
2560 x 2 = 10.24 GByte/s incoming data speed – With ~2.6 compression it’s ~4 Gbyte/s
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⚫ Current limitations

⚫ The size of the super-packet indexer is the main limitation

⚫ Currently 16384 entries are held which correspond to 32us x16K

⚫ The current data selection granularity is 32 us

⚫ This can be increased to support longer time periods

⚫ The size of the index RAM can be increased as well – More BlockRAM usage



22

⚫ Integration with the nVME interface

− The buffer management block is integrated with the NVMe stream formatter for the KCU105 
board – timing closure is achieved with the stream formatted running at 300 MHz.

Detailed view – Includes a Chipscope block for avoiding logic 
optimisation 
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⚫ To-do list

⚫ Porting the firmware to other boards containing SSDs

⚫ Testing with the compression and nVME interface 

⚫ Better scripting to provide event selection commands at realistic 
frequencies

⚫ More characterisation of the latencies and throughput

⚫ Combining writes, supernova reads, and event fragments reads in a 
stress-test scenario

⚫ Integration with the compression

⚫ Integration with the hit finder firmware
23
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